Set-Valued Interpolation, Differential Inclusions, and Sensitivity in Optimization

Set-valued interpolation and integration methods are introduced with special emphasis on error representations and error estimates with respect to Hausdorff distance. The connection between order of convergence results and sensitivity properties of finite-dimensional convex optimization problems is discussed. The results are applied to the numerical approximation of reachable sets of linear control problems by quadrature formulae and interpolation techniques for set-valued mappings.

[1]  Vladimir M. Veliov,et al.  Parametrizations of Integrals of Set-Valued Mappings and Applications , 1993 .

[2]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[3]  T. Bonnesen,et al.  Theorie der Konvexen Körper , 1934 .

[4]  Vladimir M. Veliov Second order discrete approximations to strongly convex differential inclusions , 1989 .

[5]  M. Rabinovich,et al.  An embedding theorem for spaces of convex sets , 1967 .

[6]  Robert Baier,et al.  Approximating reachable sets by extrapolation methods , 1994 .

[7]  Klaus D. Schmidt Embedding theorems for classes of convex sets , 1986 .

[8]  Philippe G. Ciarlet,et al.  Multipoint Taylor formulas and applications to the finite element method , 1971 .

[9]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[10]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[11]  L. Schumaker,et al.  Curves and surfaces in geometric design , 1994 .

[12]  Zvi Artstein,et al.  On the Calculus of Closed Set-Valued Functions , 1974 .

[13]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[14]  Vladimir M. Veliov Second-order discrete approximation to linear differential inclusions , 1992 .

[15]  Edwin Hewitt,et al.  Foundations of Modern Analysis (vol. X of Pure and Applied Mathematics). , 1961 .

[16]  Richard A. Vitale,et al.  Approximation of convex set-valued functions , 1979 .

[17]  Alexander B. Kurzhanski,et al.  Modeling Techniques for Uncertain Systems , 1994 .

[18]  T. Donchev,et al.  Moduli of smoothness of vector valued functions of a real variable and applications , 1990 .

[19]  Alois Kastner-Maresch,et al.  Difference methods with selection strategies for differential inclusions , 1993 .

[20]  Bruce A. Chartres,et al.  Convergence of linear multistep methods for differential equations with discontinuities , 1976 .

[21]  Asen L. Dontchev,et al.  Difference Methods for Differential Inclusions: A Survey , 1992, SIAM Rev..

[22]  Actual Order of Convergence of Runge–Kutta Methods on Differential Equations with Discontinuities , 1974 .

[23]  L. Hörmander Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .

[24]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[25]  H. Banks,et al.  A Differential Calculus for Multifunctions , 1970 .

[26]  R. Baier Mengenwertige Integration und die diskrete Approximation erreichbarer Mengen , 1995 .

[27]  V. Popov,et al.  The averaged moduli of smoothness : applications in numerical methods and approximation , 1988 .

[28]  On approximate evaluation of the Riemann integral of many-valued mapping , 1982 .