A Fully Discrete Discontinuous Galerkin Method for Nonlinear Fractional Fokker-Planck Equation

The fractional Fokker-Planck equation is often used to characterize anomalous diffusion. In this paper, a fully discrete approximation for the nonlinear spatial fractional Fokker-Planck equation is given, where the discontinuous Galerkin finite element approach is utilized in time domain and the Galerkin finite element approach is utilized in spatial domain. The priori error estimate is derived in detail. Numerical examples are presented which are inline with the theoretical convergence rate.

[1]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[2]  Shaher Momani,et al.  Numerical solution of Fokker–Planck equation with space- and time-fractional derivatives , 2007 .

[3]  S. I. Denisov,et al.  Generalized Fokker-Planck equation: Derivation and exact solutions , 2008, 0808.0274.

[4]  Changpin Li,et al.  A note on the finite element method for the space-fractional advection diffusion equation , 2010, Comput. Math. Appl..

[5]  Peter Hänggi,et al.  Stochastic processes: Time evolution, symmetries and linear response , 1982 .

[6]  Li Hong,et al.  The space-time finite element method for parabolic problems , 2001 .

[7]  Bernardo Spagnolo,et al.  Lévy Flight Superdiffusion: an Introduction , 2008, Int. J. Bifurc. Chaos.

[8]  Guy Jumarie,et al.  Fractional Brownian motions via random walk in the complex plane and via fractional derivative. Comparison and further results on their Fokker–Planck equations , 2004 .

[9]  Endre Süli,et al.  HP -VERSION DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC PROBLEMS , 2003 .

[10]  C. Tsallis,et al.  Anomalous diffusion: nonlinear fractional Fokker–Planck equation , 2002 .

[11]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[12]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[13]  Ralf Metzler,et al.  Deriving fractional Fokker-Planck equations from a generalised master equation , 1999 .

[14]  Mary F. Wheeler,et al.  An optimal-order L2-error estimate for nonsymmetric discontinuous Galerkin methods for a parabolic equation in multiple space dimensions , 2009 .

[15]  Vasily E. Tarasov,et al.  Fokker–Planck equation with fractional coordinate derivatives , 2008, 0805.0606.

[16]  Mihály Kovács,et al.  Numerical solutions for fractional reaction-diffusion equations , 2008, Comput. Math. Appl..

[17]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[18]  Carsten Carstensen,et al.  Discontinuous Galerkin time discretization in elastoplasticity: motivation, numerical algorithms, and applications , 2002 .

[19]  B. Spagnolo,et al.  The problem of analytical calculation of barrier crossing characteristics for Lévy flights , 2008, 0810.1816.

[20]  Igor Sokolov,et al.  Lévy flights in external force fields: from models to equations , 2002 .

[21]  Dominik Schötzau,et al.  hp-Discontinuous Galerkin Time-Stepping for Volterra Integrodifferential Equations , 2006, SIAM J. Numer. Anal..

[22]  A. Dubkov,et al.  GENERALIZED WIENER PROCESS AND KOLMOGOROV'S EQUATION FOR DIFFUSION INDUCED BY NON-GAUSSIAN NOISE SOURCE , 2005 .

[23]  Tongjun Sun,et al.  A space-time discontinuous Galerkin method for linear convection-dominated Sobolev equations , 2009, Appl. Math. Comput..

[24]  Changpin Li,et al.  Fractional differential models for anomalous diffusion , 2010 .

[25]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[26]  Changpin Li,et al.  Numerical algorithm based on Adomian decomposition for fractional differential equations , 2009, Comput. Math. Appl..

[27]  Changpin Li,et al.  On the fractional Adams method , 2009, Comput. Math. Appl..