Physical Mechanism and Performance Factors of Metal Oxide Based Resistive Switching Memory: A Review

This review summarizes the mechanism and performance of metal oxide based resistive switching memory. The origin of resistive switching (RS) behavior can be roughly classified into the conducting filament type and the interface type. Here, we adopt the filament type to study the metal oxide based resistive switching memory, which considers the migration of metallic cations and oxygen vacancies, as well as discuss two main mechanisms including the electrochemical metallization effect (ECM) and valence change memory effect (VCM). At the light of the influence of the electrode materials and switching layers on the RS characteristics, an overview has also been given on the performance parameters including the uniformity, endurance, the retention, and the multi-layer storage. Especially, we mentioned ITO (indium tin oxide) electrode and discussed the novel RS characteristics related with ITO. Finally, the challenges resistive random access memory (RRAM) device is facing, as well as the future development trend, are expressed.

[1]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[2]  Peng Zhou,et al.  Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode , 2009 .

[3]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[4]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[5]  Qi Liu,et al.  Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications , 2010, Nanotechnology.

[6]  S. Seo,et al.  Electrode dependence of resistance switching in polycrystalline NiO films , 2005 .

[7]  S. H. Jeon,et al.  A Low‐Temperature‐Grown Oxide Diode as a New Switch Element for High‐Density, Nonvolatile Memories , 2007 .

[8]  Zhaolin Gu,et al.  Methods for large reciprocating compressor capacity control: A review based on pulse signal concept , 2011 .

[9]  D. Morgan,et al.  A model for filament growth and switching in amorphous oxide films , 1970 .

[10]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[11]  Wu Tang,et al.  Crystalline Size Effects on Texture Coefficient, Electrical and Optical Properties of Sputter-deposited Ga-doped ZnO Thin Films , 2015 .

[12]  C. Hu,et al.  Effect of Top Electrode Material on Resistive Switching Properties of $\hbox{ZrO}_{2}$ Film Memory Devices , 2007, IEEE Electron Device Letters.

[13]  Y. Hirose,et al.  Polarity‐dependent memory switching and behavior of Ag dendrite in Ag‐photodoped amorphous As2S3 films , 1976 .

[14]  Ru Huang,et al.  Record Low-Power Organic RRAM With Sub-20-nA Reset Current , 2013, IEEE Electron Device Letters.

[15]  Frederick T. Chen,et al.  Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications , 2008 .

[16]  S. Sze,et al.  A floating gate and its application to memory devices , 1967 .

[17]  T. Tseng,et al.  Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films , 2009 .

[18]  Yee-Chia Yeo,et al.  Sulfur-Induced PtSi:C/Si:C Schottky Barrier Height Lowering for Realizing N-Channel FinFETs With Reduced External Resistance , 2009, IEEE Electron Device Letters.

[19]  Jong-Ho Lee,et al.  Improved endurance of resistive switching TiO2 thin film by hourglass shaped Magnéli filaments , 2011 .

[20]  Yan Wang,et al.  $\hbox{ZrO}_{2}$-Based Memory Cell With a Self-Rectifying Effect for Crossbar WORM Memory Application , 2010, IEEE Electron Device Letters.

[21]  Anderson Janotti,et al.  Functional Metal Oxide Nanostructures , 2012 .

[22]  N. Xu,et al.  Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention , 2008 .

[23]  Jang‐Sik Lee,et al.  Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices , 2008 .

[24]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[25]  Shimeng Yu,et al.  Monitoring oxygen movement by Raman spectroscopy of resistive random access memory with a graphene-inserted electrode. , 2013, Nano letters.

[26]  A. Irajizad,et al.  Electrochemically assisted photocatalytic oxidation of methanol on TiO2 nanotube arrays , 2010 .

[27]  S. Rhee,et al.  Effect of electrode material on the resistance switching of Cu2O film , 2007 .

[28]  Jinfeng Kang,et al.  Analysis of the Voltage–Time Dilemma of Metal Oxide-Based RRAM and Solution Exploration of High Speed and Low Voltage AC Switching , 2014, IEEE Transactions on Nanotechnology.

[29]  G. He,et al.  Nitrogen dependence of band alignment and electrical properties of HfTiON gate dielectrics metal-oxide-semiconductor capacitor , 2010 .

[30]  Yuchao Yang,et al.  Nonvolatile resistive switching memories-characteristics, mechanisms and challenges , 2010 .

[31]  G. Lo,et al.  Impact of Ni Concentration on the Performance of Ni Silicide/HfO2/TiN Resistive RAM (RRAM) Cells , 2014, Journal of Electronic Materials.

[32]  Albert Chin,et al.  $\hbox{Ni/GeO}_{x}\hbox{/TiO}_{y}\hbox{/TaN}$ RRAM on Flexible Substrate With Excellent Resistance Distribution , 2013, IEEE Electron Device Letters.

[33]  Sungho Kim,et al.  Structure Effects on Resistive Switching of $ \hbox{Al/TiO}_{x}/\hbox{Al}$ Devices for RRAM Applications , 2008, IEEE Electron Device Letters.

[34]  M. Kao,et al.  Bipolar resistive switching of chromium oxide for resistive random access memory , 2011 .

[35]  X. Miao,et al.  Ultrafast Synaptic Events in a Chalcogenide Memristor , 2013, Scientific Reports.

[36]  Cong Ye,et al.  Low-power bipolar resistive switching TiN/HfO2/ITO memory with self-compliance current phenomenon , 2014 .

[37]  Jin Pyo Hong,et al.  Multi-level resistive switching observations in asymmetric Pt/Ta2O5−x/TiOxNy/TiN/Ta2O5−x/Pt multilayer configurations , 2013 .

[38]  Ki-Joon Jeon,et al.  Reversible bistability of conductance on graphene/CuOx/Cu nanojunction , 2012 .

[39]  R. Muller,et al.  A comprehensive model for bipolar electrical switching of CuTCNQ memories , 2007 .

[40]  Hao Wang,et al.  Role of ITO electrode in the resistive switching behavior of TiN/HfO2/ITO memory devices at different annealing temperatures , 2015 .

[41]  R. R. Sutherland A theory for negative resistance and memory effects in thin insulating films and its application to Au-ZnS-Au devices , 1971 .

[42]  D. Ielmini,et al.  Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices , 2009, IEEE Transactions on Electron Devices.

[43]  J. Zhai,et al.  HfOx bipolar resistive memory with robust endurance using ZrNx as buttom electrode , 2013 .

[44]  Yasuo Takahashi,et al.  In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching , 2011 .

[45]  Rainer Waser,et al.  On the origin of bistable resistive switching in metal organic charge transfer complex memory cells , 2007 .

[46]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[47]  Shimeng Yu,et al.  A Low Energy Oxide‐Based Electronic Synaptic Device for Neuromorphic Visual Systems with Tolerance to Device Variation , 2013, Advanced materials.

[48]  Qi Liu,et al.  Nonpolar Nonvolatile Resistive Switching in Cu Doped $\hbox{ZrO}_{2}$ , 2008, IEEE Electron Device Letters.

[49]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[50]  C. Yoshida,et al.  High speed resistive switching in Pt∕TiO2∕TiN film for nonvolatile memory application , 2007 .

[51]  Shimeng Yu,et al.  A Phenomenological Model for the Reset Mechanism of Metal Oxide RRAM , 2010, IEEE Electron Device Letters.

[52]  D. Ielmini,et al.  Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices , 2009, IEEE Transactions on Electron Devices.

[53]  C. H. Cheng,et al.  Ultralow Switching Energy Ni/$\hbox{GeO}_{x}$ /HfON/TaN RRAM , 2011, IEEE Electron Device Letters.

[54]  Yiwei Liu,et al.  Observation of Conductance Quantization in Oxide‐Based Resistive Switching Memory , 2012, Advanced materials.

[55]  Run-Wei Li,et al.  Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9H-carbazole pendant , 2012 .

[56]  N. Yu,et al.  Structure and Electrical Characteristics of Zinc Oxide Thin Films Grown on Si (111) by Metal-organic Chemical Vapor Deposition , 2013 .

[57]  Shibing Long,et al.  An overview of resistive random access memory devices , 2011 .

[58]  W. J. Liu,et al.  Highly Uniform, Self-Compliance, and Forming-Free ALD $\hbox{HfO}_{2}$ -Based RRAM With Ge Doping , 2012, IEEE Transactions on Electron Devices.

[59]  Yue Bai,et al.  Low power W:AlOx/WOx bilayer resistive switching structure based on conductive filament formation and rupture mechanism , 2013 .

[60]  Robert K. Henderson,et al.  A 3×3, 5µm pitch, 3-transistor single photon avalanche diode array with integrated 11V bias generation in 90nm CMOS technology , 2010, 2010 International Electron Devices Meeting.

[61]  Hongwei Li,et al.  Hydrothermal synthesis and resistive switching behaviour of WO3/CoWO4 core–shell nanowires , 2014 .

[62]  S. Chang,et al.  GaN-Based Multiquantum Well Light-Emitting Diodes With Tunnel-Junction-Cascaded Active Regions , 2015, IEEE Electron Device Letters.

[63]  B. Kahng,et al.  Multilevel unipolar resistance switching in TiO2 thin films , 2009 .

[64]  Doo Seok Jeong,et al.  Study of the negative resistance phenomenon in transition metal oxide films from a statistical mechanics point of view , 2006 .

[65]  Y. Liu,et al.  Low Reset Current in Stacked $\hbox{AlO}_{x}/ \hbox{WO}_{x}$ Resistive Switching Memory , 2011, IEEE Electron Device Letters.

[66]  Shimeng Yu,et al.  Nanoscale Bipolar and Complementary Resistive Switching Memory Based on Amorphous Carbon , 2011, IEEE Transactions on Electron Devices.

[67]  Yan Wang,et al.  Investigation of resistive switching behaviours in WO3-based RRAM devices , 2011 .

[68]  W. J. Liu,et al.  A Self-Rectifying $\hbox{AlO}_{y}$ Bipolar RRAM With Sub-50-$\mu\hbox{A}$ Set/Reset Current for Cross-Bar Architecture , 2012, IEEE Electron Device Letters.

[69]  Comparative Analysis of Ti, Ni, and Au Electrodes on Characteristics of TiO2 Nanofibers for Humidity Sensor Application , 2013 .

[70]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[71]  D. Ielmini,et al.  Modeling of Set/Reset Operations in NiO-Based Resistive-Switching Memory Devices , 2009, IEEE Transactions on Electron Devices.

[72]  Pang-Shiu Chen,et al.  $\hbox{HfO}_{x}$ Bipolar Resistive Memory With Robust Endurance Using AlCu as Buffer Electrode , 2009, IEEE Electron Device Letters.

[73]  S. Seo,et al.  Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO3 electrodes , 2009 .

[74]  Byung Joon Choi,et al.  Identification of a determining parameter for resistive switching of TiO2 thin films , 2005 .

[75]  Hyunsang Hwang,et al.  Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications , 2010 .

[76]  Kow-Ming Chang,et al.  The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device , 2010, Microelectron. Reliab..

[77]  L. Goux,et al.  On the Gradual Unipolar and Bipolar Resistive Switching of TiN\ HfO2\Pt Memory Systems , 2010 .

[78]  Dim-Lee Kwong,et al.  Charge-transport characteristics in bistable resistive Poly(N-vinylcarbazole) films , 2006, IEEE Electron Device Letters.

[79]  R. Waser,et al.  Electrode kinetics of Cu–SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories , 2009 .

[80]  H. Hwang,et al.  Excellent Switching Uniformity of Cu-Doped $\hbox{MoO}_{x}/\hbox{GdO}_{x}$ Bilayer for Nonvolatile Memory Applications , 2009, IEEE Electron Device Letters.

[81]  F. Zeng,et al.  Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. , 2009, Nano letters.

[82]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[83]  I. Yoo,et al.  Effects of metal electrodes on the resistive memory switching property of NiO thin films , 2008 .

[84]  William Cheng-Yu Ma Asymmetric Driving Current Modification of CMOS LTPS-TFTs With ${\rm HfO}_{2}$ Gate Dielectric , 2014, IEEE Transactions on Electron Devices.

[85]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.