Photoluminescence and electroluminescence imaging of perovskite solar cells

Fast camera-based luminescence-imaging measurements on perovskite solar cells are presented. The fundamental correlation between the luminescence intensity and the open circuit voltage predicted by the generalised Planck law is confirmed, enabling various quantitative methods for the detection of efficiency-limiting defects to be applied to this new cell structure. Interstinegly, it is found that this fundamental correlation is valid only for light-soaked devices. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  Daub,et al.  Ultralow values of the absorption coefficient of Si obtained from luminescence. , 1995, Physical review letters.

[2]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[3]  P. Chaturvedi,et al.  Spatially resolved electrical parameters of silicon wafers and solar cells by contactless photoluminescence imaging , 2013 .

[4]  Michael D. McGehee,et al.  Perovskite solar cells: Continuing to soar. , 2014, Nature materials.

[5]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[6]  Arie Zaban,et al.  Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions. , 2014, The journal of physical chemistry letters.

[7]  M. Green Do built‐in fields improve solar cell performance? , 2009 .

[8]  P. Würfel,et al.  Verification of a generalized Planck law for luminescence radiation from silicon solar cells , 1992 .

[9]  J. Bisquert,et al.  Electrical field profile and doping in planar lead halide perovskite solar cells , 2014 .

[10]  Aron Walsh,et al.  The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells , 2015, Nature Communications.

[11]  M. Green,et al.  Photovoltaics: Perovskite cells charge forward. , 2015, Nature materials.

[12]  Thorsten Trupke,et al.  Advanced luminescence based effective series resistance imaging of silicon solar cells , 2008 .

[13]  H. Bolink,et al.  Trap‐Assisted Non‐Radiative Recombination in Organic–Inorganic Perovskite Solar Cells , 2015, Advanced materials.

[14]  Xueyan Wang,et al.  The effect of external electric field on the performance of perovskite solar cells , 2015 .

[15]  P. Würfel,et al.  The chemical potential of radiation , 1982 .

[16]  Chuanxiang Sheng,et al.  Magnetic field effects in hybrid perovskite devices , 2015, Nature Physics.

[17]  Shujuan Huang,et al.  Morphology and Carrier Extraction Study of Organic-Inorganic Metal Halide Perovskite by One- and Two-Photon Fluorescence Microscopy. , 2014, The journal of physical chemistry letters.

[18]  K. Bothe,et al.  Reverse Saturation Current Density Imaging of Highly Doped Regions in Silicon Employing Photoluminescence Measurements , 2012, IEEE Journal of Photovoltaics.

[19]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[20]  M. Green,et al.  Photoluminescence based open circuit voltage and effective lifetime images re-interpretation for solar cells: The influence of horizontal balancing currents , 2014 .

[21]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[22]  Wilhelm Warta,et al.  Minority carrier lifetime imaging of silicon wafers calibrated by quasi-steady-state photoluminescence , 2011 .

[23]  B. Feuerbacher,et al.  Verification of a generalised Planck law by investigation of the emission from GaAs luminescent diodes , 1990 .

[24]  Omer Yaffe,et al.  Trap states in lead iodide perovskites. , 2015, Journal of the American Chemical Society.

[25]  P. Würfel,et al.  Electroluminescence of the dye-sensitized solar cell , 1999 .

[26]  Martin Kasemann,et al.  Calculation of quantitative shunt values using photoluminescence imaging , 2012 .

[27]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[28]  Thorsten Trupke,et al.  Photoluminescence Imaging for Photovoltaic Applications , 2012 .

[29]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[30]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[31]  G. H. Bauer,et al.  Quasi-Fermi level splitting and identification of recombination losses from room temperature luminescence in Cu(In1−xGax)Se2 thin films versus optical band gap , 2005 .

[32]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[33]  Alain Goriely,et al.  Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States , 2014 .

[34]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[35]  Leone Spiccia,et al.  Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells , 2014 .

[36]  M. Schubert,et al.  Photoluminescence imaging of silicon wafers , 2006 .

[37]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[38]  Wilhelm Warta,et al.  Imaging Techniques for Quantitative Silicon Material and Solar Cell Analysis , 2014, IEEE Journal of Photovoltaics.

[39]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[40]  S. Finkbeiner,et al.  Generalized Planck's radiation law for luminescence via indirect transitions , 1995 .

[41]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[42]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[43]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[44]  M. Green,et al.  Spatially resolved photoluminescence imaging of essential silicon solar cell parameters and comparison with CELLO measurements , 2013 .

[45]  Thorsten Trupke,et al.  Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells , 2006 .

[46]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.