THE FUV TO NEAR-IR MORPHOLOGIES OF LUMINOUS INFRARED GALAXIES IN THE GOALS SAMPLE

We compare the morphologies of a sample of 20 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) in the FUV, B, I, and H bands, using the Gini (G) and M20 parameters to quantitatively estimate the distribution and concentration of flux as a function of wavelength. Hubble Space Telescope (HST) images provide an average spatial resolution of ∼ 80 pc ?> . While our LIRGs can be reliably classified as mergers across the entire range of wavelengths studied here, there is a clear shift toward more negative M20 (more bulge-dominated) and a less significant decrease in G values at longer wavelengths. We find no correlation between the derived FUV G-M20 parameters and the global measures of the IR to FUV flux ratio (IRX). Given the fine resolution in our HST data, this suggests either that the UV morphology and IRX are correlated on very small scales, or that the regions emitting the bulk of the IR emission emit almost no FUV light. We use our multi-wavelength data to simulate how merging LIRGs would appear from z ∼ 0.5 ?> –3 in deep optical and near-infrared images such as the Hubble Ultra-Deep Field, and use these simulations to measure the G-M20 at these redshifts. Our simulations indicate a noticeable decrease in G, which flattens at z ≥ 2 ?> by as much as 40%, resulting in mis-classifying our LIRGs as disk-like, even in the rest-frame FUV. The higher redshift values of M20 for the GOALS sources do not appear to change more than about 10% from the values at z ∼ 0 ?> . The change in G-M20 is caused by the surface brightness dimming of extended tidal features and asymmetries, and also the decreased spatial resolution which reduced the number of individual clumps identified. This effect, seen as early as z ∼ 0.5 ?> , could easily lead to an underestimate of the number of merging galaxies at high-redshift in the rest-frame FUV.

[1]  Arizona State University,et al.  EXPLAINING THE [C ii]157.7 μm DEFICIT IN LUMINOUS INFRARED GALAXIES—FIRST RESULTS FROM A HERSCHEL/PACS STUDY OF THE GOALS SAMPLE , 2013, 1307.2635.

[2]  A. Cimatti,et al.  The deepest Herschel-PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations , 2013, 1303.4436.

[3]  K. Sheth,et al.  HUBBLE SPACE TELESCOPE ACS IMAGING OF THE GOALS SAMPLE: QUANTITATIVE STRUCTURAL PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES WITH LIR > 1011.4 L☉ , 2013, 1303.3977.

[4]  L. Kewley,et al.  MID-INFRARED PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES. I. SPITZER INFRARED SPECTROGRAPH SPECTRA FOR THE GOALS SAMPLE , 2013, 1302.4477.

[5]  B. Holwerda,et al.  Quantified H I morphology – VI. The morphology of extended discs in UV and H I , 2012, 1207.4916.

[6]  B. Weiner,et al.  CANDELS: CORRELATIONS OF SPECTRAL ENERGY DISTRIBUTIONS AND MORPHOLOGIES WITH STAR FORMATION STATUS FOR MASSIVE GALAXIES AT z ∼ 2 , 2012, 1204.4194.

[7]  D. Elbaz,et al.  GOODS-HERSCHEL AND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES AT z ∼ 2 , 2011, 1110.4057.

[8]  David R. Law,et al.  AN HST/WFC3-IR MORPHOLOGICAL SURVEY OF GALAXIES AT z = 1.5–3.6. I. SURVEY DESCRIPTION AND MORPHOLOGICAL PROPERTIES OF STAR-FORMING GALAXIES , 2011, 1107.3137.

[9]  John E. Krist,et al.  20 years of Hubble Space Telescope optical modeling using Tiny Tim , 2011 .

[10]  A. Cimatti,et al.  Building the cosmic infrared background brick by brick with Herschel/PEP. ⋆ , 2011, 1106.3070.

[11]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[12]  A. Koekemoer,et al.  The Tumultuous Formation of the Hubble Sequence at z > 1 Examined with HST/WFC3 Observations of the Hubble Ultra Deep Field , 2011, 1105.2522.

[13]  A. Evans,et al.  THE NUCLEAR STRUCTURE IN NEARBY LUMINOUS INFRARED GALAXIES: HUBBLE SPACE TELESCOPE NICMOS IMAGING OF THE GOALS SAMPLE , 2010, 1012.4012.

[14]  D. Thompson,et al.  A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 μm SELECTED GALAXIES IN THE COSMOS FIELD. II. THE ROLE OF MERGERS IN GALAXY EVOLUTION , 2010, 1006.4956.

[15]  B. Madore,et al.  MID-INFRARED SPECTRAL DIAGNOSTICS OF LUMINOUS INFRARED GALAXIES , 2010, 1012.1891.

[16]  Kevin Xu,et al.  THE GREAT OBSERVATORIES ALL-SKY LIRG SURVEY: COMPARISON OF ULTRAVIOLET AND FAR-INFRARED PROPERTIES , 2010, 1004.0985.

[17]  M. Sullivan,et al.  THE CFHTLS-DEEP CATALOG OF INTERACTING GALAXIES. I. MERGER RATE EVOLUTION TO z = 1.2 , 2010, 1001.2772.

[18]  D. Schiminovich,et al.  MORPHOLOGIES OF LOCAL LYMAN BREAK GALAXY ANALOGS. II. A COMPARISON WITH GALAXIES AT z ≃ 2–4 IN ACS AND WFC3 IMAGES OF THE HUBBLE ULTRA DEEP FIELD , 2009, 0911.1279.

[19]  Linda J. Smith,et al.  STRUCTURES OF LOCAL GALAXIES COMPARED TO HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0904.4433.

[20]  L. Kewley,et al.  GOALS: The Great Observatories All-Sky LIRG Survey , 2009, 0904.4498.

[21]  J. Trump,et al.  ACTIVE GALACTIC NUCLEUS HOST GALAXY MORPHOLOGIES IN COSMOS , 2009 .

[22]  B. Magnelli,et al.  The 0.4 < z < 1.3 star formation history of the Universe as viewed in the far-infrared , 2009, 0901.1543.

[23]  C. Brook,et al.  Forming a large disc galaxy from a z < 1 major merger , 2008, 0812.0379.

[24]  Lars Hernquist,et al.  HOW DO DISKS SURVIVE MERGERS? , 2008, 0806.1739.

[25]  J. Trump,et al.  AGN Host Galaxy Morphologies in COSMOS , 2008, 0809.0309.

[26]  B. Robertson,et al.  High-Redshift Galaxy Kinematics: Constraints on Models of Disk Formation , 2008, 0808.1100.

[27]  A. Hopkins,et al.  The Evolution of Galaxy Mergers and Morphology at z < 1.2 in the Extended Groth Strip , 2006, astro-ph/0602088.

[28]  H. F. Erguson,et al.  THE MORPHOLOGICAL DIVERSITIES AMONG STAR-FORMING GALAXIES AT HIGH REDSHIFTS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY , 2008 .

[29]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[30]  G. Helou,et al.  The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z ~ 2 in the GOODS Fields , 2007, astro-ph/0701283.

[31]  C. Conselice,et al.  The Role of Galaxy Interactions and Mergers in Star Formation at z ≤ 1.3: Mid-Infrared Properties in the Spitzer First Look Survey , 2007, astro-ph/0701040.

[32]  C. Steidel,et al.  The Physical Nature of Rest-UV Galaxy Morphology during the Peak Epoch of Galaxy Formation , 2006, astro-ph/0610693.

[33]  S. M. Fall,et al.  The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey , 2006, astro-ph/0606696.

[34]  Joel R. Primack,et al.  The Rest-Frame Far-Ultraviolet Morphologies of Star-Forming Galaxies at z ~ 1.5 and 4 , 2006 .

[35]  Carnegie-Mellon,et al.  A Merger-driven Scenario for Cosmological Disk Galaxy Formation , 2005, astro-ph/0503369.

[36]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[37]  T. Goto Optical properties of 4248 IRAS galaxies , 2005, astro-ph/0504080.

[38]  I. Mirabel,et al.  A Bias in Optical Observations of High-Redshift Luminous Infrared Galaxies , 2003, astro-ph/0311632.

[39]  P. Madau,et al.  A New Nonparametric Approach to Galaxy Morphological Classification , 2003, astro-ph/0311352.

[40]  S. M. Fall,et al.  The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging , 2003, astro-ph/0309105.

[41]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[42]  Massimo Stiavelli,et al.  The Hubble Ultra Deep Field , 2003, astro-ph/0607632.

[43]  C. Conselice The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories , 2003, astro-ph/0303065.

[44]  S. Veilleux,et al.  Optical and Near-Infrared Imaging of the IRAS 1 Jy Sample of Ultraluminous Infrared Galaxies. II. The Analysis , 2002, astro-ph/0207373.

[45]  Instituto de Fisica de Cantabria,et al.  HST/WFPC2 imaging of the QDOT ultraluminous infrared galaxy sample , 2001, astro-ph/0106275.

[46]  L. Armus,et al.  Age Dating Ultraluminous Infrared Galaxies along the Merger Sequence , 2001, astro-ph/0103425.

[47]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[48]  W. Vacca,et al.  The Apparent Morphology of Peculiar Galaxies at Intermediate to High Redshifts , 1997, astro-ph/9707275.

[49]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[50]  M. Livio,et al.  On the Morphology of the HST Faint Galaxies , 1996 .

[51]  G. Neugebauer,et al.  Visual and Near-Infrared Imaging of Ultraluminous Infrared Galaxies: The IRAS 2 Jy Sample , 1996 .

[52]  D. Sanders,et al.  The IRAS 1 Jy Survey of Ultraluminous Infrared Galaxies. I. The Sample and Luminosity Function , 1998, astro-ph/9806148.

[53]  G. Neugebauer,et al.  Warm ultraluminous galaxies in the IRAS survey - The transition from galaxy to quasar? , 1988 .

[54]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .

[55]  T. Heckman,et al.  Multicolor optical imaging of powerful far-infrared galaxies - more evidence for a link between galaxy mergers and far-infrared emission , 1987 .

[56]  C. Beichman,et al.  Unidentified IRAS sources: Ultrahigh-luminosity galaxies , 1985 .

[57]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .