An improved ab initio potential energy surface for N2–N2

Abstract A new four-dimensional potential energy surface has been developed for N 2 dimer. Ab initio calculations were performed with the cc-pVXZ correlation consistent basis set. For calculating the PES of the N 2 dimer, we have chosen to follow the supermolecular Moller–Plesset perturbation theory up to second order (MP2). Our MP2 results show that the most stable structure of N 2 dimer is the slipped parallel form with θ a  = 50, θ b  = 50, ϕ  = 0 conformation with 7.7 a.u. and 487.6 μH values of equilibrium distance and energy.

[1]  Bruce J. Berne,et al.  Intermolecular potential models for anisotropic molecules, with applications to N2, CO2, and benzene , 1976 .

[2]  Harry Partridge,et al.  The N2–N2 potential energy surface , 1997 .

[3]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[4]  P. J. Hay,et al.  Electron correlation effects on the N2–N2 interaction , 1984 .

[5]  M. Szczęśniak,et al.  Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations , 1994 .

[6]  J. G. Powles,et al.  The properties of liquid nitrogen , 1976 .

[7]  Olivier Couronne,et al.  An ab initio and DFT study of (N2)2 dimers , 1999 .

[8]  Matthew L. Leininger,et al.  Is Mo/ller–Plesset perturbation theory a convergent ab initio method? , 2000 .

[9]  Maciej Gutowski,et al.  Accuracy of the Boys and Bernardi function counterpoise method , 1993 .

[10]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[11]  J. Hirschfelder Perturbation theory for exchange forces, II , 1967 .

[12]  P. Wormer,et al.  Correlated van der Waals coefficients for dimers consisting of He, Ne, H2, and N2 , 1988 .

[13]  J. Novoa,et al.  Potential energy surface of weakly bonded intermolecular complexes: does one need counterpoise corrections for a proper representation? A numerical test using near complete basis sets , 1998 .

[14]  Jeppe Olsen,et al.  Surprising cases of divergent behavior in Mo/ller–Plesset perturbation theory , 1996 .

[15]  V. Aquilanti,et al.  Quantum dynamics of clusters on experimental potential energy surfaces: Triplet and quintet O2-O2 surfaces and dimers of para-N2 with ortho- and para-N2 and with O2 , 2004 .

[16]  A. Jalili,et al.  Transport properties and effective intermolecular potentials for O2-O2, N2-N2, and O2-N2 , 2004 .

[17]  K. Szalewicz,et al.  Symmetry-adapted perturbation theory calculation of the He-HF intermolecular potential energy surface , 1993 .

[18]  Hideto Kanamori,et al.  Ab initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motion , 1998 .

[19]  K. Szalewicz,et al.  Symmetry-adapted double-perturbation analysis of intramolecular correlation effects in weak intermolecular interactions , 1979 .

[20]  G. Ewing,et al.  The infrared spectrum of the (N2)2 van der waals molecule , 1973 .

[21]  A. S. Dickinson,et al.  Transport and relaxation properties of N2 , 1994 .

[22]  E. R. Cohen,et al.  Determination of molecular multipole moments and potential function parameters of non-polar molecules from far infra-red spectra , 1976 .

[23]  D. Cremer,et al.  Sixth-Order Møller−Plesset Perturbation TheoryOn the Convergence of the MPn Series , 1996 .

[24]  T. Dunning,et al.  A Road Map for the Calculation of Molecular Binding Energies , 2000 .

[25]  Fernando Pirani,et al.  An intermolecular potential for nitrogen from a multi-property analysis , 1998 .

[26]  Ad van der Avoird,et al.  N2–N2 interaction potential from ab initio calculations, with application to the structure of (N2)2 , 1980 .

[27]  A. van der Avoird,et al.  An improved intermolecular potential for nitrogen , 1986 .

[28]  J. Williams,et al.  Electric field-gradient-induced birefringence in N2, C2H6, C3H6, Cl2, N2O and CH3F , 1983 .

[29]  K. Leonhard,et al.  Monte Carlo simulations of nitrogen using an ab initio potential , 2002 .

[30]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[31]  M. Gutowski,et al.  Critical evaluation of some computational approaches to the problem of basis set superposition error , 1993 .

[32]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[33]  S. Green,et al.  Quantum calculations for rotational energy transfer in nitrogen molecule collisions , 1996 .

[34]  A. Mckellar Infrared spectra of the (N2)2 and N2–Ar van der Waals molecules , 1988 .

[35]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[36]  Patrick W. Fowler,et al.  Theoretical studies of van der Waals molecules and intermolecular forces , 1988 .

[37]  V. Vesovic,et al.  Second-order corrections for transport properties of pure diatomic gases , 1994 .

[38]  Stanisl,et al.  Many‐body symmetry‐adapted perturbation theory of intermolecular interactions. H2O and HF dimers , 1991 .

[39]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[40]  P. Wormer,et al.  Time‐dependent coupled Hartree–Fock calculations of multipole polarizabilities and dispersion interactions in van der Waals dimers consisting of He, H2, Ne, and N2 , 1983 .

[41]  N. S. Gillis,et al.  The anisotropic interaction between nitrogen molecules from solid state data , 1977 .

[42]  Fernando Pirani,et al.  The N2–N2 system: An experimental potential energy surface and calculated rotovibrational levels of the molecular nitrogen dimer , 2002 .