Liquid chromatin Hi-C characterizes compartment-dependent chromatin interaction dynamics

[1]  D. Gerlich,et al.  Organization of Chromatin by Intrinsic and Regulated Phase Separation , 2019, Cell.

[2]  Christopher P. Davis,et al.  Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2 , 2019, Genes & development.

[3]  L. Mirny,et al.  Heterochromatin drives compartmentalization of inverted and conventional nuclei , 2019, Nature.

[4]  H. Kimura,et al.  Single nucleosome imaging reveals loose genome chromatin networks via active RNA polymerase II , 2019, The Journal of cell biology.

[5]  Haobin Wang,et al.  Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation , 2018, The Journal of Biological Chemistry.

[6]  Andrew J. Spakowitz,et al.  Bottom–up modeling of chromatin segregation due to epigenetic modifications , 2018, Proceedings of the National Academy of Sciences.

[7]  Jian Ma,et al.  Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler , 2018, The Journal of cell biology.

[8]  Steven P. Callahan,et al.  Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling , 2018, bioRxiv.

[9]  Lucas J. T. Kaaij,et al.  Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development , 2018, Cell reports.

[10]  B. Tabak,et al.  Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus , 2018, Cell.

[11]  K. Rippe,et al.  Formation of Chromatin Subcompartments by Phase Separation. , 2018, Biophysical journal.

[12]  Leonid A. Mirny,et al.  Emerging Evidence of Chromosome Folding by Loop Extrusion , 2018, bioRxiv.

[13]  J. R. Paulson,et al.  A pathway for mitotic chromosome formation , 2018, Science.

[14]  L. Mirny,et al.  Heterochromatin drives organization of conventional and inverted nuclei , 2018, bioRxiv.

[15]  V. Backman,et al.  Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins , 2017, bioRxiv.

[16]  K. Nasmyth,et al.  The Cohesin Ring Uses Its Hinge to Organize DNA Using Non-topological as well as Topological Mechanisms , 2017, Cell.

[17]  L. Mirny,et al.  Chromatin organization by an interplay of loop extrusion and compartmental segregation , 2017, Proceedings of the National Academy of Sciences.

[18]  J. Marko,et al.  Mechanics and buckling of biopolymeric shells and cell nuclei , 2017, bioRxiv.

[19]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[20]  Changbong Hyeon,et al.  Interphase human chromosome exhibits out of equilibrium glassy dynamics , 2017, Nature Communications.

[21]  J. Marko,et al.  Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus , 2017, Molecular biology of the cell.

[22]  Job Dekker,et al.  Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation. , 2017, Methods.

[23]  Alma L. Burlingame,et al.  Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin , 2017, Nature.

[24]  Juan M. Vaquerizas,et al.  Chromatin Architecture Emerges during Zygotic Genome Activation Independent of Transcription , 2017, Cell.

[25]  Yea Woon Kim,et al.  Erythroid specific activator GATA-1-dependent interactions between CTCF sites around the β-globin locus. , 2017, Biochimica et biophysica acta. Gene regulatory mechanisms.

[26]  Victor O. Leshyk,et al.  The 4D nucleome project , 2017, Nature.

[27]  A. Tanay,et al.  Cell-cycle dynamics of chromosomal organisation at single-cell resolution , 2016, Nature.

[28]  A. Németh,et al.  Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation , 2016, bioRxiv.

[29]  Houda Belaghzal,et al.  Hi-C 2.0: An Optimized Hi-C Procedure for High-Resolution Genome-Wide Mapping of Chromosome Conformation , 2016, bioRxiv.

[30]  B. Bonev,et al.  Organization and function of the 3D genome , 2016, Nature Reviews Genetics.

[31]  Giacomo Cavalli,et al.  Organization and function of the 3D genome , 2016, Nature Reviews Genetics.

[32]  Peter G Wolynes,et al.  Transferable model for chromosome architecture , 2016, Proceedings of the National Academy of Sciences.

[33]  Brian J. Beliveau,et al.  Spatial organization of chromatin domains and compartments in single chromosomes , 2016, Science.

[34]  William Stafford Noble,et al.  Massively multiplex single-cell Hi-C , 2016, Nature Methods.

[35]  K. Maeshima,et al.  Dynamic Nucleosome Movement Provides Structural Information of Topological Chromatin Domains in Living Human Cells , 2016, bioRxiv.

[36]  D. Marenduzzo,et al.  A Polymer Model with Epigenetic Recolouring Reveals a Pathway for the de novo Establishment and 3D organisation of Chromatin Domains , 2016, bioRxiv.

[37]  L. Mirny,et al.  Formation of Chromosomal Domains in Interphase by Loop Extrusion , 2015, bioRxiv.

[38]  L. Mirny,et al.  The 3D Genome as Moderator of Chromosomal Communication , 2016, Cell.

[39]  Dariusz M Plewczynski,et al.  CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription , 2015, Cell.

[40]  Peter H. L. Krijger,et al.  CTCF Binding Polarity Determines Chromatin Looping. , 2015, Molecular cell.

[41]  Neva C. Durand,et al.  Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes , 2015, Proceedings of the National Academy of Sciences.

[42]  Abena B. Redwood,et al.  Loss of lamin A function increases chromatin dynamics in the nuclear interior , 2015, Nature Communications.

[43]  Michael Q. Zhang,et al.  CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function , 2015, Cell.

[44]  D. Odom,et al.  Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture , 2015, Cell reports.

[45]  Noam Kaplan,et al.  The Hitchhiker's guide to Hi-C analysis: practical guidelines. , 2015, Methods.

[46]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[47]  Daniel Jost,et al.  Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains , 2014, Nucleic acids research.

[48]  Job Dekker,et al.  Organization of the Mitotic Chromosome , 2013, Science.

[49]  A. Tanay,et al.  Single cell Hi-C reveals cell-to-cell variability in chromosome structure , 2013, Nature.

[50]  D. Weitz,et al.  Micron-scale coherence in interphase chromatin dynamics , 2013, Proceedings of the National Academy of Sciences.

[51]  Bas van Steensel,et al.  Genome Architecture: Domain Organization of Interphase Chromosomes , 2013, Cell.

[52]  Josée Dostie,et al.  From cells to chromatin: capturing snapshots of genome organization with 5C technology. , 2012, Methods.

[53]  John F. Marko,et al.  Self-organization of domain structures by DNA-loop-extruding enzymes , 2012, Nucleic acids research.

[54]  J. Dekker,et al.  The long-range interaction landscape of gene promoters , 2012, Nature.

[55]  L. Mirny,et al.  Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization , 2012, Nature Methods.

[56]  M. Groudine,et al.  Cohesin Mediates Chromatin Interactions That Regulate Mammalian β-globin Expression* , 2011, The Journal of Biological Chemistry.

[57]  Shili Duan,et al.  Recognition and Specificity Determinants of the Human Cbx Chromodomains* , 2010, The Journal of Biological Chemistry.

[58]  Christophe Zimmer,et al.  Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres , 2010, Proceedings of the National Academy of Sciences.

[59]  Job Dekker,et al.  My5C: web tools for chromosome conformation capture studies , 2009, Nature Methods.

[60]  Y. Garini,et al.  Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. , 2009, Physical review letters.

[61]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[62]  S. Terjung,et al.  Plasticity of HP1 proteins in mammalian cells , 2007, Journal of Cell Science.

[63]  B. Steensel,et al.  Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C) , 2006, Nature Genetics.

[64]  Rajika Thakar,et al.  Dynamics and anchoring of heterochromatic loci during development , 2006, Journal of Cell Science.

[65]  C. Nusbaum,et al.  Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. , 2006, Genome research.

[66]  Wouter de Laat,et al.  CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. , 2006, Genes & development.

[67]  S. Gasser,et al.  Sir-Mediated Repression Can Occur Independently of Chromosomal and Subnuclear Contexts , 2004, Cell.

[68]  Susan M. Gasser,et al.  Live Imaging of Telomeres yKu and Sir Proteins Define Redundant Telomere-Anchoring Pathways in Yeast , 2002, Current Biology.

[69]  Erik Splinter,et al.  Looping and interaction between hypersensitive sites in the active beta-globin locus. , 2002, Molecular cell.

[70]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[71]  K Nasmyth,et al.  Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. , 2000, Molecular cell.

[72]  B. Stillman,et al.  Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. , 1997, Genes & development.

[73]  A. Murray,et al.  Interphase chromosomes undergo constrained diffusional motion in living cells , 1997, Current Biology.

[74]  E. Siggia,et al.  Polymer models of meiotic and mitotic chromosomes. , 1997, Molecular biology of the cell.

[75]  N. Hadjichristidis,et al.  Microphase separation in block copolymers , 1997 .

[76]  Michael Schick,et al.  Stable and Unstable Phases of a Linear Multiblock Copolymer Melt , 1994 .

[77]  Marko,et al.  Phase separation in a grafted polymer layer. , 1991, Physical review letters.

[78]  A. Riggs,et al.  DNA methylation and late replication probably aid cell memory, and type I DNA reeling could aid chromosome folding and enhancer function. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[79]  L. Leibler Theory of Microphase Separation in Block Copolymers , 1980 .

[80]  Mehmet,et al.  Practical Guidelines , 2016 .

[81]  M. Groudine,et al.  Cohesin Mediates Chromatin Interactions That Regulate Mammalian (cid:1) -globin Expression * , 2011 .

[82]  I. Amit,et al.  Comprehensive mapping of long-range interactions reveals folding principles of the human genome. , 2009, Science.

[83]  K. Nasmyth THE GENOME : Joining , Resolving , and Separating Sister Chromatids During Mitosis and Meiosis , 2006 .

[84]  J. Marko Microphase Separation of Block Copolymer Rings , 1993 .