On the generalization of the hazard rate twisting-based simulation approach

[1]  Mohamed-Slim Alouini,et al.  A fast simulation method for the Log-normal sum distribution using a hazard rate twisting technique , 2015, 2015 IEEE International Conference on Communications (ICC).

[2]  Søren Asmussen,et al.  Error Rates and Improved Algorithms for Rare Event Simulation with Heavy Weibull Tails , 2015 .

[3]  Mohamed-Slim Alouini,et al.  An Improved Hazard Rate Twisting Approach for the Statistic of the Sum of Subexponential Variates , 2014, IEEE Communications Letters.

[4]  Dirk P. Kroese,et al.  Rare-event probability estimation with conditional Monte Carlo , 2011, Ann. Oper. Res..

[5]  Sandeep Juneja,et al.  Efficient simulation of tail probabilities of sums of correlated lognormals , 2011, Ann. Oper. Res..

[6]  Dirk P. Kroese,et al.  Handbook of Monte Carlo Methods , 2011 .

[7]  Stephen P. Boyd,et al.  Convex Optimization , 2004, IEEE Transactions on Automatic Control.

[8]  Jürgen Hartinger,et al.  On the efficiency of the Asmussen–Kroese-estimator and its application to stop-loss transforms , 2009 .

[9]  Mohamed-Slim Alouini,et al.  Sum of Weibull variates and performance of diversity systems , 2009, IWCMC.

[10]  Gerardo Rubino,et al.  Introduction to Rare Event Simulation , 2009, Rare Event Simulation using Monte Carlo Methods.

[11]  J. Blanchet,et al.  State-dependent importance sampling for regularly varying random walks , 2008, Advances in Applied Probability.

[12]  Sandeep Juneja,et al.  Estimating tail probabilities of heavy tailed distributions with asymptotically zero relative error , 2007, Queueing Syst. Theory Appl..

[13]  Mohsen Kavehrad,et al.  BER Performance of Free-Space Optical Transmission with Spatial Diversity , 2007, IEEE Transactions on Wireless Communications.

[14]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[15]  Ingram Olkin,et al.  Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families , 2007 .

[16]  Paul Dupuis,et al.  Importance sampling for sums of random variables with regularly varying tails , 2007, TOMC.

[17]  Michel Daoud Yacoub,et al.  Simple precise approximations to Weibull sums , 2006, IEEE Communications Letters.

[18]  Dirk P. Kroese,et al.  Improved algorithms for rare event simulation with heavy tails , 2006, Advances in Applied Probability.

[19]  George K. Karagiannidis,et al.  Gaussian class multivariate Weibull distributions: theory and applications in fading channels , 2005, IEEE Transactions on Information Theory.

[20]  Norman C. Beaulieu,et al.  Accurate simple closed-form approximations to Rayleigh sum distributions and densities , 2005, IEEE Communications Letters.

[21]  Norman C. Beaulieu,et al.  Highly accurate simple closed-form approximations to lognormal sum distributions and densities , 2004, IEEE Communications Letters.

[22]  Norman C. Beaulieu,et al.  An optimal lognormal approximation to lognormal sum distributions , 2004, IEEE Transactions on Vehicular Technology.

[23]  Dirk P. Kroese,et al.  The Transform Likelihood Ratio Method for Rare Event Simulation with Heavy Tails , 2004, Queueing Syst. Theory Appl..

[24]  Predrag R. Jelenkovic,et al.  Resource sharing with subexponential distributions , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[25]  Gordon L. Stuber,et al.  Principles of mobile communication (2nd ed.) , 2001 .

[26]  C. H. Bianchi,et al.  Wideband outdoor channel sounding at 2.4 GHz , 2000, 2000 IEEE-APS Conference on Antennas and Propagation for Wireless Communications (Cat. No.00EX380).

[27]  Fulvio Babich,et al.  Statistical analysis and characterization of the indoor propagation channel , 2000, IEEE Trans. Commun..

[28]  P. Shahabuddin,et al.  Simulating heavy tailed processes using delayed hazard rate twisting , 1999, WSC'99. 1999 Winter Simulation Conference Proceedings. 'Simulation - A Bridge to the Future' (Cat. No.99CH37038).

[29]  J. Bucklew,et al.  On large deviations theory and asymptotically efficient Monte Carlo estimation , 1989, Proceedings of the 32nd Midwest Symposium on Circuits and Systems,.

[30]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[31]  S. Schwartz,et al.  On the distribution function and moments of power sums with log-normal components , 1982, The Bell System Technical Journal.

[32]  L. Fenton The Sum of Log-Normal Probability Distributions in Scatter Transmission Systems , 1960 .

[33]  Vivien Chu,et al.  Ultra Wideband Signals and Systems in Communication Engineering , 2007 .

[34]  Gordon L. Stüber Principles of mobile communication , 1996 .

[35]  Khaled Ben Letaief,et al.  Performance analysis of digital lightwave systems using efficient computer simulation techniques , 1995, IEEE Trans. Commun..

[36]  J. Sadowsky On the Optimality and Stability of Exponential Twisting in Monte Carlo Estimation , 1993, Proceedings. IEEE International Symposium on Information Theory.