Synthetic biology approaches to biological containment: pre-emptively tackling potential risks

Biocontainment comprises any strategy applied to ensure that harmful organisms are confined to controlled laboratory conditions and not allowed to escape into the environment. Genetically engineered microorganisms (GEMs), regardless of the nature of the modification and how it was established, have potential human or ecological impact if accidentally leaked or voluntarily released into a natural setting. Although all evidence to date is that GEMs are unable to compete in the environment, the power of synthetic biology to rewrite life requires a pre-emptive strategy to tackle possible unknown risks. Physical containment barriers have proven effective but a number of strategies have been developed to further strengthen biocontainment. Research on complex genetic circuits, lethal genes, alternative nucleic acids, genome recoding and synthetic auxotrophies aim to design more effective routes towards biocontainment. Here, we describe recent advances in synthetic biology that contribute to the ongoing efforts to develop new and improved genetic, semantic, metabolic and mechanistic plans for the containment of GEMs.

[1]  M. Salas,et al.  Terminal protein-primed amplification of heterologous DNA with a minimal replication system based on phage Φ29 , 2011, Proceedings of the National Academy of Sciences.

[2]  Eric Meggers,et al.  A simple glycol nucleic acid. , 2005, Journal of the American Chemical Society.

[3]  Gerd H. G. Moe-Behrens,et al.  Preparing synthetic biology for the world , 2013, Front. Microbio..

[4]  H. Barner,et al.  The conversion of 5-methyldeoxycytidine to thymidine in vitro and in vivo. , 1957, The Journal of biological chemistry.

[5]  J. Seibel,et al.  Cover Picture: Redesign of the Active Site of Sucrose Phosphorylase through a Clash‐Induced Cascade of Loop Shifts (ChemBioChem 1/2016) , 2016 .

[6]  J. Shine,et al.  The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Malte Winnacker,et al.  Artificial genetic sets composed of size-expanded base pairs. , 2013, Angewandte Chemie.

[8]  S. Lindow,et al.  Release of recombinant microorganisms. , 1993, Annual review of microbiology.

[9]  Margarita Salas,et al.  The ϕ29 DNA polymerase:protein‐primer structure suggests a model for the initiation to elongation transition , 2006, The EMBO journal.

[10]  Young Jun Seo,et al.  Transcription of an expanded genetic alphabet. , 2009, Journal of the American Chemical Society.

[11]  S. Purton,et al.  Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii , 2015, Plant biotechnology journal.

[12]  Shigeyuki Yokoyama,et al.  Codon reassignment in the Escherichia coli genetic code , 2010, Nucleic acids research.

[13]  S. Soond,et al.  The DNA and RNA polymerase genes of yeast plasmid pGKL2 are essential loci for plasmid integrity and maintenance. , 1995, Microbiology.

[14]  Philippe Marliere,et al.  The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world , 2009, Systems and Synthetic Biology.

[15]  C. M. Joyce,et al.  Comparative Kinetics of Nucleotide Analog Incorporation by Vent DNA Polymerase* , 2004, Journal of Biological Chemistry.

[16]  Tillmann Heinisch,et al.  Design strategies for the creation of artificial metalloenzymes. , 2010, Current opinion in chemical biology.

[17]  Fei Chen,et al.  Recognition of an expanded genetic alphabet by type-II restriction endonucleases and their application to analyze polymerase fidelity , 2011, Nucleic acids research.

[18]  Jian-Dong Huang,et al.  Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli , 2005, Nucleic acids research.

[19]  Peter E. Nielsen,et al.  PNA technology , 2004, Molecular biotechnology.

[20]  Michael C. Jewett,et al.  Protein synthesis by ribosomes with tethered subunits , 2015, Nature.

[21]  J. Chin,et al.  A network of orthogonal ribosome·mRNA pairs , 2005, Nature chemical biology.

[22]  Andrew Stirling,et al.  Keep it complex , 2010, Nature.

[23]  P G Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[24]  Víctor de Lorenzo,et al.  Synthetic bugs on the loose: containment options for deeply engineered (micro)organisms. , 2016, Current opinion in biotechnology.

[25]  A. Shen Allosteric regulation of protease activity by small molecules. , 2010, Molecular bioSystems.

[26]  P. Holliger,et al.  Directed evolution of artificial enzymes (XNAzymes) from diverse repertoires of synthetic genetic polymers , 2015, Nature Protocols.

[27]  V. Walbot,et al.  Identification of the motifs within the tobacco mosaic virus 5'-leader responsible for enhancing translation. , 1992, Nucleic acids research.

[28]  Farren J. Isaacs,et al.  Repurposing the translation apparatus for synthetic biology. , 2015, Current opinion in chemical biology.

[29]  Wilfried Wackernagel,et al.  Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues , 2010, Applied Microbiology and Biotechnology.

[30]  P. Scholz,et al.  Chemical etiology of nucleic acid structure: the alpha-threofuranosyl-(3'-->2') oligonucleotide system. , 2000, Science.

[31]  Peter Scholz,et al.  Chemical Etiology of Nucleic Acid Structure: The α-Threofuranosyl-(3'→2') Oligonucleotide System , 2000 .

[32]  D. Söll,et al.  Expanding the Genetic Code of Escherichia coli with Phosphoserine , 2011, Science.

[33]  M. Singer,et al.  Asilomar conference on recombinant DNA molecules. , 1975, Science.

[34]  T. Carell,et al.  DNA--metal base pairs. , 2007, Angewandte Chemie.

[35]  M. Jewett,et al.  Evolution of translation initiation sequences using in vitro yeast ribosome display , 2016, Biotechnology and bioengineering.

[36]  Vitor B. Pinheiro,et al.  The XNA world: progress towards replication and evolution of synthetic genetic polymers. , 2012, Current opinion in chemical biology.

[37]  W. Craigen,et al.  Expression of peptide chain release factor 2 requires high-efficiency frameshift , 1986, Nature.

[38]  John C. Chaput,et al.  The structural diversity of artificial genetic polymers , 2015, Nucleic acids research.

[39]  Atsushi Yamaguchi,et al.  Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli , 2015, Nucleic acids research.

[40]  A. Arkin,et al.  Genetic basis for nitrate resistance in Desulfovibrio strains , 2014, Front. Microbiol..

[41]  Philippe Marlière,et al.  Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids , 2009, Chemistry & biodiversity.

[42]  P. Herdewijn,et al.  Cyclohexene Nucleic Acids (CeNA): Serum Stable Oligonucleotides that Activate RNase H and Increase Duplex Stability with Complementary RNA , 2000 .

[43]  Jason W. Chin,et al.  Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome , 2010, Nature.

[44]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[45]  John Karanicolas,et al.  Designing allosteric control into enzymes by chemical rescue of structure. , 2012, Journal of the American Chemical Society.

[46]  P. Plateau,et al.  Metabolism of d-Aminoacyl-tRNAs inEscherichia coli and Saccharomyces cerevisiae Cells* , 2000, The Journal of Biological Chemistry.

[47]  George M Church,et al.  Synthetic biology projects in vitro. , 2006, Genome research.

[48]  Steven A. Benner,et al.  DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides , 2014, Front. Microbiol..

[49]  P. Marlière,et al.  Artificially ambiguous genetic code confers growth yield advantage. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Michael Kühl,et al.  Spatial patterns and links between microbial community composition and function in cyanobacterial mats , 2014, Front. Microbiol..

[51]  John C. Chaput,et al.  Synthetic Genetic Polymers Capable of Heredity and Evolution , 2012, Science.

[52]  Biocontainment design considerations for biopharmaceutical facilities , 1993, Journal of Industrial Microbiology.

[53]  Philippe Marlière,et al.  Chemical evolution of a bacterium's genome. , 2011, Angewandte Chemie.

[54]  Arjun Ravikumar,et al.  An orthogonal DNA replication system in yeast. , 2014, Nature chemical biology.

[55]  James J Collins,et al.  “Deadman” and “Passcode” microbial kill switches for bacterial containment , 2015, Nature chemical biology.

[56]  Dieter Söll,et al.  Chemical Evolution of a Bacterial Proteome. , 2015, Angewandte Chemie.

[57]  J. Steitz,et al.  How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Christopher J. Gregg,et al.  Probing the Limits of Genetic Recoding in Essential Genes , 2013, Science.

[59]  G. Church,et al.  Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli. , 2016, ACS synthetic biology.

[60]  George M. Church,et al.  Regenesis: How Synthetic Biology Will Reinvent Nature and Ourselves , 2012 .

[61]  M. Salas,et al.  Initiation of phage phi 29 DNA replication in vitro: formation of a covalent complex between the terminal protein, p3, and 5'-dAMP. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Thomas R Ward,et al.  Recent achievments in the design and engineering of artificial metalloenzymes. , 2014, Current opinion in chemical biology.

[63]  Tetsuya Yomo,et al.  A transcription and translation-coupled DNA replication system using rolling-circle replication , 2015, Scientific Reports.

[64]  Eduardo Díaz,et al.  A dual lethal system to enhance containment of recombinant micro-organisms. , 2003, Microbiology.

[65]  Fei Chen,et al.  Expanded genetic alphabets in the polymerase chain reaction. , 2010, Angewandte Chemie.

[66]  Farren J. Isaacs,et al.  Recoded organisms engineered to depend on synthetic amino acids , 2015, Nature.

[67]  Tom Ellis,et al.  Building-in biosafety for synthetic biology. , 2013, Microbiology.

[68]  E. Kool,et al.  Encoding phenotype in bacteria with an alternative genetic set. , 2011, Journal of the American Chemical Society.

[69]  Víctor de Lorenzo,et al.  Synthetic constructs in/for the environment: Managing the interplay between natural and engineered Biology , 2012, FEBS Letters.

[70]  J. Chin,et al.  Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion , 2007, Nature Biotechnology.

[71]  L. Blanco,et al.  Terminal protein-primed DNA amplification. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Thomas Lavergne,et al.  A Semi-Synthetic Organism with an Expanded Genetic Alphabet , 2014, Nature.

[73]  Samuel Graff,et al.  Essays in Biochemistry , 1956, The Yale Journal of Biology and Medicine.

[74]  Vitor B. Pinheiro,et al.  Synthetic polymers and their potential as genetic materials , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[75]  D. Söll,et al.  The Bacterial YbaK Protein Is a Cys-tRNAPro and Cys-tRNACys Deacylase* , 2005, Journal of Biological Chemistry.

[76]  P. Marlière,et al.  Reassigning cysteine in the genetic code of Escherichia coli. , 1998, Genetics.

[77]  D. W. Cheng,et al.  The minimal genome: a metabolic and environmental comparison. , 2011, Briefings in functional genomics.

[78]  Jean Paul Remon,et al.  Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10 , 2003, Nature Biotechnology.

[79]  Markus Schmidt,et al.  Improving Biocontainment with Synthetic Biology: Beyond Physical Containment , 2015 .

[80]  T. Santangelo,et al.  Transcription Regulation in Archaea , 2016, Journal of bacteriology.

[81]  Farren J. Isaacs,et al.  Multilayered genetic safeguards limit growth of microorganisms to defined environments , 2015, Nucleic acids research.

[82]  Vitor B. Pinheiro,et al.  Towards XNA nanotechnology: new materials from synthetic genetic polymers , 2014, Trends in biotechnology.

[83]  Andrew B. Martin,et al.  Generation of a bacterium with a 21 amino acid genetic code. , 2003, Journal of the American Chemical Society.

[84]  J. Davison,et al.  Genetic exchange between bacteria in the environment. , 1999, Plasmid.

[85]  P. Marlière,et al.  Redesigning the leaving group in nucleic acid polymerization , 2012, FEBS letters.

[86]  Larry W. McLaughlin,et al.  High fidelity TNA synthesis by Therminator polymerase , 2005, Nucleic acids research.

[87]  Peter G. Schultz,et al.  Genomically Recoded Organisms Expand Biological Functions , 2013, Science.

[88]  J. Chin,et al.  Expanding and reprogramming the genetic code of cells and animals. , 2014, Annual review of biochemistry.

[89]  A. Hinnebusch,et al.  Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets , 2009, Cell.

[90]  C. J. Murray,et al.  Microscale to Manufacturing Scale-up of Cell-Free Cytokine Production—A New Approach for Shortening Protein Production Development Timelines , 2011, Biotechnology and bioengineering.

[91]  Yi Lu,et al.  Design of functional metalloproteins , 2009, Nature.

[92]  M. Kozak Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes , 1986, Cell.

[93]  M. Mendenhall,et al.  Frameshift suppressor mutations affecting the major glycine transfer RNAs of Saccharomyces cerevisiae. , 1987, Journal of molecular biology.

[94]  George M. Church,et al.  Design, synthesis, and testing toward a 57-codon genome , 2016, Science.

[95]  M. Maynadier,et al.  Multifunctional Gold-Mesoporous Silica Nanocomposites for Enhanced Two-Photon Imaging and Therapy of Cancer Cells , 2016, Front. Mol. Biosci..

[96]  J. Thornton,et al.  The structural basis of allosteric regulation in proteins , 2009, FEBS letters.

[97]  Tom Ellis,et al.  GeneGuard: A modular plasmid system designed for biosafety. , 2015, ACS synthetic biology.

[98]  D. Paul,et al.  Suicidal genetically engineered microorganisms for bioremediation: need and perspectives. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[99]  Steven A Benner,et al.  Transcription, reverse transcription, and analysis of RNA containing artificial genetic components. , 2015, ACS synthetic biology.

[100]  Peter G Schultz,et al.  A genetically encoded bidentate, metal-binding amino acid. , 2007, Angewandte Chemie.

[101]  J. Chin,et al.  Reprogramming the genetic code: from triplet to quadruplet codes. , 2012, Angewandte Chemie.

[102]  L. Elo,et al.  ROTS: reproducible RNA-seq biomarker detector—prognostic markers for clear cell renal cell cancer , 2015, Nucleic acids research.

[103]  E. Kool,et al.  Selective and Stable DNA Base Pairing without Hydrogen Bonds. , 1998, Journal of the American Chemical Society.

[104]  M. Yarus,et al.  Reading frame selection and transfer RNA anticodon loop stacking. , 1987, Science.

[105]  Thomas Lavergne,et al.  KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry , 2012, Nature chemical biology.

[106]  D. Gilbert,et al.  Replication timing and transcriptional control: beyond cause and effect-part III. , 2016, Current opinion in cell biology.

[107]  9. Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids , 2011 .

[108]  J. Chaput,et al.  An efficient and faithful in vitro replication system for threose nucleic acid. , 2013, Journal of the American Chemical Society.

[109]  P. Herdewijn,et al.  1′, 5′ ‐Anhydrohexitol Oligonucleotides: Synthesis, Base Pairing and Recognition by Regular Oligodeoxyribonucleotides and Oligoribonucleotides , 1997 .

[110]  Anthony D. Keefe,et al.  Direct in vitro selection of a 2'-O-methyl aptamer to VEGF. , 2005, Chemistry & biology.

[111]  B. Duim,et al.  High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs , 2013, Front. Microbiol..

[112]  D. G. Gibson,et al.  Design and synthesis of a minimal bacterial genome , 2016, Science.

[113]  C. Arraiano,et al.  Ribonucleases, antisense RNAs and the control of bacterial plasmids. , 2015, Plasmid.

[114]  Young Jun Seo,et al.  PCR with an expanded genetic alphabet. , 2009, Journal of the American Chemical Society.

[115]  S. Busby,et al.  Local and global regulation of transcription initiation in bacteria , 2016, Nature Reviews Microbiology.

[116]  L. Bossi,et al.  Four-base codons ACCA, ACCU and ACCC are recognized by frameshift suppressor sufJ , 1981, Cell.

[117]  Pamela A Silver,et al.  Encapsulation as a Strategy for the Design of Biological Compartmentalization. , 2016, Journal of molecular biology.

[118]  J Christopher Anderson,et al.  Synthetic Auxotrophs with Ligand-Dependent Essential Genes for a BL21(DE3) Biosafety Strain. , 2015, ACS synthetic biology.

[119]  K. Kirshenbaum,et al.  Breaking the degeneracy of the genetic code. , 2003, Journal of the American Chemical Society.

[120]  M. Salas,et al.  DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication , 2016, Front. Mol. Biosci..

[121]  A. Komeili,et al.  Compartmentalization and organelle formation in bacteria. , 2014, Current opinion in cell biology.

[122]  R. Webster,et al.  Principles of Virology: Molecular Biology, Pathogenesis, and Control , 2001 .

[123]  Steven A. Benner,et al.  Structural basis for a six nucleotide genetic alphabet. , 2015, Journal of the American Chemical Society.

[124]  Dieter Söll,et al.  Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology , 2015, Nature Reviews Microbiology.

[125]  Manuel A. S. Santos,et al.  Non-Standard Genetic Codes Define New Concepts for Protein Engineering , 2015, Life.

[126]  A. Kingsman,et al.  A retrovirus-like strategy for expression of a fusion protein encoded by yeast transposon Ty1 , 1985, Nature.

[127]  S. J. Flint,et al.  Principles of Virology: Molecular Biology, Pathogenesis, and Control , 1999 .

[128]  L. Poulsen,et al.  The hok killer gene family in gram-negative bacteria. , 1990, The New biologist.

[129]  Ryo Takeuchi,et al.  Biocontainment of genetically modified organisms by synthetic protein design , 2015, Nature.

[130]  F. Arnold,et al.  A Panel of TrpB Biocatalysts Derived from Tryptophan Synthase through the Transfer of Mutations that Mimic Allosteric Activation. , 2016, Angewandte Chemie.

[131]  C. Schmidt-Dannert,et al.  Engineering formation of multiple recombinant Eut protein nanocompartments in E. coli , 2016, Scientific Reports.

[132]  C. Proud Signalling to translation: how signal transduction pathways control the protein synthetic machinery. , 2007, The Biochemical journal.

[133]  S. Valla,et al.  Positively regulated bacterial expression systems , 2008, Microbial biotechnology.

[134]  P. Farabaugh,et al.  Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[135]  J. Chaput,et al.  Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase , 2016, Chembiochem : a European journal of chemical biology.

[136]  Srivatsan Raman,et al.  Engineering allostery. , 2014, Trends in genetics : TIG.

[137]  Paul D. Cotter,et al.  Nucleic acid-based approaches to investigate microbial-related cheese quality defects , 2012, Front. Microbio..

[138]  Aaron M. Leconte,et al.  Discovery, characterization, and optimization of an unnatural base pair for expansion of the genetic alphabet. , 2008, Journal of the American Chemical Society.

[139]  Rui Gan,et al.  Cell-free protein synthesis: applications come of age. , 2012, Biotechnology advances.

[140]  Finbarr Hayes,et al.  Toxins-Antitoxins: Plasmid Maintenance, Programmed Cell Death, and Cell Cycle Arrest , 2003, Science.

[141]  Peter G Schultz,et al.  An expanded genetic code with a functional quadruplet codon. , 2004, Proceedings of the National Academy of Sciences of the United States of America.