PEDOT:PSS/QCM-based multimodal humidity and pressure sensor

Abstract A room temperature multimodal sensor composed of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) deposited on an AT-cut quartz crystal microbalance (QCM) crystal was fabricated. The sensor’s nonlinear motional resistance and frequency responses are deconvoluted using a feedforward backpropagation neural network (FBN), which allows a single sensor to function simultaneously as a relative humidity (RH) sensor and a pressure sensor using only two electrodes. We demonstrate that the predictive ability of the sensor is highly influenced by the data used to train the FBN. When training sets are tailored to resemble the operating conditions of the sensor, the sensor achieves an average resolution of

[1]  E. Zdankiewicz,et al.  Micromachined water vapor sensors: a review of sensing technologies , 2001 .

[2]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .

[3]  H. Gong,et al.  A room temperature indium tin oxide/quartz crystal microbalance gas sensor for nitric oxide , 2003 .

[4]  Ronn Andriessen,et al.  Printable anodes for flexible organic solar cell modules , 2004 .

[5]  Il Woong Kwon,et al.  Thermistor behavior of PEDOT: PSS thin film , 2009 .

[6]  Ning Han,et al.  Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO , 2009 .

[7]  Salih Okur,et al.  Electrical characterization of PEDOT:PSS beyond humidity saturation , 2009 .

[8]  Ichiro Yamada,et al.  Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires , 2009 .

[9]  Michael Y. Hu,et al.  Forecasting with artificial neural networks: The state of the art , 1997 .

[10]  H. V. Shurmer,et al.  The application of discrimination technique to alcohols and tobaccos using tin-oxide sensors , 1989 .

[11]  Haibin Yang,et al.  Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing , 2008 .

[12]  Jaime Gómez Gil,et al.  Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks , 2012, Sensors.

[13]  Craig A Grimes,et al.  Metal oxide nanoarchitectures for environmental sensing. , 2003, Journal of nanoscience and nanotechnology.

[14]  N. Spencer,et al.  Two-Fluid Model for the Interpretation of Quartz Crystal Microbalance Response: Tuning Properties of Polymer Brushes with Solvent Mixtures , 2013 .

[15]  Brice Sorli,et al.  Quartz Crystal Microbalance (QCM) used as humidity sensor , 2000 .

[16]  Deepak Uttamchandani,et al.  Miniature humidity micro-sensor based on organic conductive polymer - poly(3,4-ethylenedioxythiophene) , 2009 .

[17]  Isao Karube,et al.  Computation of equivalent circuit parameters of quartz crystals in contact with liquids and study of liquid properties , 1988 .

[18]  Kuo-Chen Wei,et al.  Characterization of Piezoresistive PEDOT:PSS Pressure Sensors with Inter-Digitated and Cross-Point Electrode Structures , 2015, Sensors.

[19]  Salih Okur,et al.  VOC sensors based on a metal oxide nanofibrous membrane/QCM system prepared by electrospinning , 2014 .

[20]  E. Teller,et al.  On a Theory of the van der Waals Adsorption of Gases , 1940 .

[21]  Thomas Philip,et al.  Humidity estimation using neural network and optical fiber sensor , 2009 .

[22]  Mangilal Agarwal,et al.  Polymer-based microsensor for soil moisture measurement , 2008 .

[23]  Zhi Chen,et al.  An alpha-alumina moisture sensor for relative and absolute humidity measurement , 1992, Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting.

[24]  Stephen J. Martin,et al.  Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading , 1991 .

[25]  J. Gordon,et al.  Frequency of a quartz microbalance in contact with liquid , 1985 .

[26]  Wen-Jong Wu,et al.  A Printable Humidity Sensing Material Based on Conductive Polymer and Nanoparticles Composites , 2013 .

[27]  Sang-Woo Ban,et al.  Explosive gas recognition system using thick film sensor array and neural network , 2000 .

[28]  S. Meskers,et al.  Infrared Detectors with Poly(3,4‐ethylenedioxy thiophene)/Poly(styrene sulfonic acid) (PEDOT/PSS) as the Active Material , 2003 .

[29]  Allan Melvin Andrew,et al.  Classifying Sources Influencing Indoor Air Quality (IAQ) Using Artificial Neural Network (ANN) , 2015, Sensors.

[30]  Davide Iannuzzi,et al.  Demonstration of an optically actuated ferrule-top device for pressure and humidity sensing , 2013 .

[31]  John H. Xin,et al.  Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers , 2005 .

[32]  Mohd Nizar Hamidon,et al.  Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review , 2014, Sensors.

[33]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[34]  J. Fernandez de Canete,et al.  Artificial Neural Networks for Identification and Control of a Lab-Scale Distillation Column using LABVIEW , 2008 .

[35]  Bin Ding,et al.  Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection , 2004 .

[36]  Chi-En Lu,et al.  Humidity Sensors: A Review of Materials and Mechanisms , 2005 .

[37]  Mahdi Ghasemi-Varnamkhasti,et al.  Application of electronic nose to beer recognition using supervised artificial neural networks , 2014, 2014 International Conference on Control, Decision and Information Technologies (CoDIT).