Patterned Wettability Surface for Competition‐Driving Large‐Grained Perovskite Solar Cells

[1]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[2]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[3]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[4]  G. Fang,et al.  Effective Carrier‐Concentration Tuning of SnO2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells , 2018, Advanced materials.

[5]  Jingjing Zhao,et al.  Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules , 2018 .

[6]  Nam-Gyu Park,et al.  Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells. , 2016, Accounts of chemical research.

[7]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[8]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[9]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[10]  G. Cao,et al.  Highly Efficient and Stable Perovskite Solar Cells Based on Monolithically Grained CH3NH3PbI3 Film , 2017 .

[11]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[12]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[13]  Michael Saliba,et al.  Efficient and Stable Inorganic Perovskite Solar Cells Manufactured by Pulsed Flash Infrared Annealing , 2018, Advanced Energy Materials.

[14]  Wei Chen,et al.  Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering , 2016, Nature Energy.

[15]  Hongzheng Chen,et al.  Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. , 2015, Journal of the American Chemical Society.

[16]  A. Thind,et al.  Atomic Structure and Electrical Activity of Grain Boundaries and Ruddlesden–Popper Faults in Cesium Lead Bromide Perovskite , 2018, Advanced materials.

[17]  T. Hayat,et al.  Temperature-assisted rapid nucleation: a facile method to optimize the film morphology for perovskite solar cells , 2017 .

[18]  P. Ajayan,et al.  Effect of Precursor Solution Aging on the Crystallinity and Photovoltaic Performance of Perovskite Solar Cells , 2017 .

[19]  A. Jen,et al.  A Low‐Temperature, Solution‐Processable Organic Electron‐Transporting Layer Based on Planar Coronene for High‐performance Conventional Perovskite Solar Cells , 2016, Advanced materials.

[20]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[21]  Gang Li,et al.  Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties , 2016, Advanced materials.

[22]  Jinsong Hu,et al.  Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes , 2017 .

[23]  Jae Bum Jeon,et al.  Antisolvent with an Ultrawide Processing Window for the One‐Step Fabrication of Efficient and Large‐Area Perovskite Solar Cells , 2018, Advanced materials.

[24]  Henry J. Snaith,et al.  A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films , 2017 .

[25]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[26]  M. Grätzel,et al.  Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells , 2016, Advanced materials.

[27]  Yanlin Song,et al.  Diffraction‐Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping , 2018 .

[28]  Barry P Rand,et al.  Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites , 2017, Nature Photonics.

[29]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[30]  J. Aizenberg,et al.  Patterned growth of large oriented organic semiconductor single crystals on self-assembled monolayer templates. , 2005, Journal of the American Chemical Society.

[31]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[32]  Seonhee Lee,et al.  Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells , 2016, Nature Energy.

[33]  Yiwang Chen,et al.  Nucleation and Crystallization Control via Polyurethane to Enhance the Bendability of Perovskite Solar Cells with Excellent Device Performance , 2017 .

[34]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[35]  Richard H. Friend,et al.  Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes , 2015, Science.

[36]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[37]  Yanlin Song,et al.  High efficient perovskite whispering-gallery solar cells , 2018, Nano Energy.

[38]  Dong Hoe Kim,et al.  Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening , 2016, Nature Communications.

[39]  Qiyuan He,et al.  The Effect of Thermal Annealing on Charge Transport in Organolead Halide Perovskite Microplate Field‐Effect Transistors , 2017, Advanced materials.

[40]  Luis Camacho,et al.  Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells , 2017, Nature Energy.

[41]  F. So,et al.  High‐Efficiency Solution‐Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer , 2015 .

[42]  Jin Zhai,et al.  Directional water collection on wetted spider silk , 2010, Nature.