nbodykit: An Open-source, Massively Parallel Toolkit for Large-scale Structure

We present nbodykit, an open-source, massively parallel Python toolkit for analyzing large-scale structure (LSS) data. Using Python bindings of the Message Passing Interface (MPI), we provide parallel implementations of many commonly used algorithms in LSS. nbodykit is both an interactive and scalable piece of scientific software, performing well in a supercomputing environment while still taking advantage of the interactive tools provided by the Python ecosystem. Existing functionality includes estimators of the power spectrum, 2 and 3-point correlation functions, a Friends-of-Friends grouping algorithm, mock catalog creation via the halo occupation distribution technique, and approximate N-body simulations via the FastPM scheme. The package also provides a set of distributed data containers, insulated from the algorithms themselves, that enable nbodykit to provide a unified treatment of both simulation and observational data sets. nbodykit can be easily deployed in a high performance computing environment, overcoming some of the traditional difficulties of using Python on supercomputers. We provide performance benchmarks illustrating the scalability of the software. The modular, component-based approach of nbodykit allows researchers to easily build complex applications using its tools. The package is extensively documented at this http URL, which also includes an interactive set of example recipes for new users to explore. As open-source software, we hope nbodykit provides a common framework for the community to use and develop in confronting the analysis challenges of future LSS surveys.

[1]  L. Wasserman,et al.  Fast Algorithms and Efficient Statistics: N-Point Correlation Functions , 2000, astro-ph/0012333.

[2]  Yu Feng,et al.  Theoretical Systematics of Future Baryon Acoustic Oscillation Surveys , 2017, Monthly Notices of the Royal Astronomical Society.

[3]  A. Leauthaud,et al.  A THEORETICAL FRAMEWORK FOR COMBINING TECHNIQUES THAT PROBE THE LINK BETWEEN GALAXIES AND DARK MATTER , 2011, 1103.2077.

[4]  Nick Hand,et al.  Launching Python Applications on Peta-scale Massively Parallel Systems , 2016 .

[5]  Chirag Modi,et al.  Halo bias in Lagrangian Space: Estimators and theoretical predictions , 2016, 1612.01621.

[6]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[7]  Matias Zaldarriaga,et al.  Iterative initial condition reconstruction , 2017, 1704.06634.

[8]  Brigitta Sipocz,et al.  Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools , 2016, 1606.04106.

[9]  Hong Guo,et al.  A NEW METHOD TO CORRECT FOR FIBER COLLISIONS IN GALAXY TWO-POINT STATISTICS , 2011, 1111.6598.

[10]  Paul J. Steinhardt,et al.  The observational case for a low-density Universe with a non-zero cosmological constant , 1995, Nature.

[11]  Case Western Reserve University,et al.  Galaxy evolution from halo occupation distribution modeling of deep2 and sdss galaxy clustering , 2007, astro-ph/0703457.

[12]  Christopher Hirata,et al.  Constraints on local primordial non-Gaussianity from large scale structure , 2008 .

[13]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[14]  Mario A. Storti,et al.  MPI for Python: Performance improvements and MPI-2 extensions , 2008, J. Parallel Distributed Comput..

[15]  Erik Tollerud,et al.  Introducing decorated HODs: modelling assembly bias in the galaxy–halo connection , 2015, 1512.03050.

[16]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[17]  A. Hamilton Uncorrelated modes of the non-linear power spectrum , 1999, astro-ph/9905191.

[18]  Martin White,et al.  Beyond the plane-parallel approximation for redshift surveys , 2017, 1709.09730.

[19]  Erik Tollerud,et al.  Software Use in Astronomy: an Informal Survey , 2015, ArXiv.

[20]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[21]  Hiroaki Nishioka,et al.  A Measurement of the Quadrupole Power Spectrum in the Clustering of the 2dF QSO Survey , 2006 .

[22]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[23]  David Schlegel,et al.  SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large-scale structure catalogues , 2015, 1509.06529.

[24]  Zachary Slepian,et al.  A new look at lines of sight: using Fourier methods for the wide-angle anisotropic 2-point correlation function , 2015, 1510.04809.

[25]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[26]  Matias Zaldarriaga,et al.  Solving large scale structure in ten easy steps with COLA , 2013, 1301.0322.

[27]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[28]  Uros Seljak,et al.  Primordial non-Gaussianity from the large-scale structure , 2010, 1003.5020.

[29]  M. White The Mass Function , 2002, astro-ph/0207185.

[30]  Teppei Okumura,et al.  Reconstruction of halo power spectrum from redshift-space galaxy distribution: cylinder-grouping method and halo exclusion effect , 2016, 1611.04165.

[31]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[32]  Shaun Cole,et al.  Constraints on Omega from the IRAS redshift surveys , 1995 .

[33]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[34]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[35]  Uros Seljak,et al.  Extending the modeling of the anisotropic galaxy power spectrum to k = 0.4 hMpc−1 , 2017, 1706.02362.

[36]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[37]  W. M. Wood-Vasey,et al.  THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA , 2015, 1508.04473.

[38]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[39]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[40]  G. Bernstein,et al.  The skewness of the aperture mass statistic , 2003 .

[41]  George Efstathiou,et al.  Galaxy correlations on large scales , 1990 .

[42]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[43]  Ashley J. Ross,et al.  Detection of baryon acoustic oscillation features in the large-scale three-point correlation function of SDSS BOSS DR12 CMASS galaxies , 2016, 1607.06097.

[44]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[45]  Manodeep Sinha,et al.  Corrfunc: Blazing fast correlation functions on the CPU , 2017 .

[46]  R. Scoccimarro,et al.  Fast estimators for redshift-space clustering , 2015, 1506.02729.

[47]  Urovs Seljak,et al.  Lagrangian perturbation theory at one loop order: successes, failures, and improvements , 2014, 1410.1617.

[48]  Benedikt Diemer,et al.  COLOSSUS: A Python Toolkit for Cosmology, Large-scale Structure, and Dark Matter Halos , 2017, The Astrophysical Journal Supplement Series.

[49]  M. Crocce,et al.  Accurate estimators of correlation functions in Fourier space , 2015, 1512.07295.

[50]  Eiichiro Komatsu,et al.  Generating log-normal mock catalog of galaxies in redshift space , 2017, 1706.09195.

[51]  Lisandro Dalcin,et al.  Parallel distributed computing using Python , 2011 .

[52]  Hugh Merz,et al.  Towards optimal parallel PM N-body codes: PMFAST , 2005 .

[53]  Yu Feng,et al.  Forecasts for the WFIRST High Latitude Survey using the BlueTides simulation , 2016, 1605.05670.

[54]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[55]  S. Maddox,et al.  The cosmological constant and cold dark matter , 1990, Nature.

[56]  D. Eisenstein,et al.  Accelerating the two-point and three-point galaxy correlation functions using Fourier transforms , 2015, 1506.04746.

[57]  Michael Pippig PFFT: An Extension of FFTW to Massively Parallel Architectures , 2013, SIAM J. Sci. Comput..

[58]  Gong-Bo Zhao,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Constraining modified gravity , 2016, 1612.00812.

[59]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[60]  Hee-Jong SeoDaniel J. Eisenstein Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .

[61]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[62]  P. Mcdonald,et al.  FastPM: a new scheme for fast simulations of dark matter and haloes , 2016, 1603.00476.

[63]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[64]  Martin White,et al.  Mock galaxy catalogues using the quick particle mesh method , 2013, 1309.5532.

[65]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:signs of neutrino mass in current cosmological data sets , 2014, 1403.4599.

[66]  C. Blake,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL: MARCH 17, 2003 Preprint typeset using L ATEX style emulateapj v. 26/01/00 OVER 5000 DISTANT EARLY-TYPE GALAXIES IN COMBO-17: A RED SEQUENCE AND ITS EVOLUTION SINCE Z ∼ 1 , 2003 .

[67]  M. Norman,et al.  yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.

[68]  Uros Seljak,et al.  Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies , 2016, 1611.05007.

[69]  David R. Silva,et al.  The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.

[70]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[71]  Ashley J. Ross,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Constraining modified gravity , 2016, 1612.00812.

[72]  Adam D. Myers,et al.  Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations , 2013, 1311.1767.

[73]  Manuel Hohmann,et al.  Wormholes in conformal gravity , 2018, Journal of Cosmology and Astroparticle Physics.

[74]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[75]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[76]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview , 2011, 1104.2932.

[77]  Michael S. Turner,et al.  The cosmological constant is back , 1995, astro-ph/9504003.

[78]  D. Eisenstein,et al.  Computing the Three-Point Correlation Function of Galaxies in $\mathcal{O}(N^2)$ Time , 2015, 1506.02040.

[79]  Adam D. Myers,et al.  Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars , 2014, 1404.1801.

[80]  Zachary Slepian,et al.  A practical computational method for the anisotropic redshift-space three-point correlation function , 2017, 1709.10150.

[81]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[82]  J. Lesgourgues,et al.  Massive neutrinos and cosmology , 2005, astro-ph/0603494.

[83]  B. Jones,et al.  A lognormal model for the cosmological mass distribution. , 1991 .

[84]  Uros Seljak,et al.  An optimal FFT-based anisotropic power spectrum estimator , 2017, 1704.02357.

[85]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[86]  Volker Springel,et al.  An Ideal Mass Assignment Scheme for Measuring the Power Spectrum with Fast Fourier Transforms , 2008, 0804.0070.

[87]  Davide Bianchi,et al.  Measuring line-of-sight-dependent Fourier-space clustering using FFTs , 2015, 1505.05341.

[88]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.