Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes

[1]  P. Webley,et al.  Assessment of ZIF materials for CO2 capture from high pressure natural gas streams , 2015 .

[2]  Yusuke Yamauchi,et al.  Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework. , 2015, ACS nano.

[3]  Run-Wei Li,et al.  Metal‐Organic Framework Nanofilm for Mechanically Flexible Information Storage Applications , 2015 .

[4]  Mircea Dincă,et al.  On the Mechanism of MOF-5 Formation under Cathodic Bias , 2015 .

[5]  Lu Wang,et al.  Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI. , 2015, Journal of the American Chemical Society.

[6]  Jan Fransaer,et al.  Electrochemical Film Deposition of the Zirconium Metal–Organic Framework UiO-66 and Application in a Miniaturized Sorbent Trap , 2015 .

[7]  Derrek E. Lobo,et al.  Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts. , 2015, ACS applied materials & interfaces.

[8]  Ryan P. Lively,et al.  Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations. , 2014, ChemSusChem.

[9]  Minghao Yu,et al.  One step cathodically electrodeposited [Tb2(BDC)3(H2O)4]n thin film as a luminescent probe for Cu2+ detection , 2014 .

[10]  Peixun Xiong,et al.  Zn-doped Ni-MOF material with a high supercapacitive performance , 2014 .

[11]  Minghao Yu,et al.  An electrodeposited lanthanide MOF thin film as a luminescent sensor for carbonate detection in aqueous solution , 2014 .

[12]  H. Furukawa,et al.  Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. , 2014, Angewandte Chemie.

[13]  A. Boutin,et al.  Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs , 2014, 1409.7172.

[14]  J. Fransaer,et al.  Luminescent terbium-containing metal-organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. , 2014, Chemical communications.

[15]  M. Allendorf,et al.  MOF-based electronic and opto-electronic devices. , 2014, Chemical Society reviews.

[16]  J. Fransaer,et al.  A Hybrid Supercapacitor based on Porous Carbon and the Metal‐Organic Framework MIL‐100(Fe) , 2014 .

[17]  Kyung Min Choi,et al.  Supercapacitors of nanocrystalline metal-organic frameworks. , 2014, ACS nano.

[18]  S. Qiu,et al.  Electrochemical synthesis of a microporous conductive polymer based on a metal-organic framework thin film. , 2014, Angewandte Chemie.

[19]  Woosuk Cho,et al.  Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7). , 2014, Journal of the American Chemical Society.

[20]  Hui Yang,et al.  Zeolitic imidazolate framework as formaldehyde gas sensor. , 2014, Inorganic chemistry.

[21]  S. Deng,et al.  Synthesis and characterization of zeolitic imidazolate framework ZIF-7 for CO2 and CH4 separation , 2014, Microporous and Mesoporous Materials.

[22]  B. Grzybowski,et al.  Storage of electrical information in metal-organic-framework memristors. , 2014, Angewandte Chemie.

[23]  A. Kuhn,et al.  Site-selective synthesis of Janus-type metal-organic framework composites. , 2014, Angewandte Chemie.

[24]  M. Ho,et al.  Electrochemical synthesis, characterization of Ir-Zn containing coordination polymer, and application in oxygen and glucose sensing. , 2014, Dalton transactions.

[25]  M. Everaert,et al.  Mechanical properties of electrochemically synthesised metal–organic framework thin films , 2013 .

[26]  J. Fransaer,et al.  Solvent-free synthesis of supported ZIF-8 films and patterns through transformation of deposited zinc oxide precursors , 2013 .

[27]  A. Welle,et al.  Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting , 2013, Beilstein journal of nanotechnology.

[28]  B. Liu,et al.  Rapid fabrication of metal–organic framework thin films using in situ microwave irradiation and its photocatalytic property , 2013 .

[29]  B. Tang,et al.  Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors , 2013, Russian Journal of Electrochemistry.

[30]  Chongli Zhong,et al.  A water stable metal-organic framework with optimal features for CO2 capture. , 2013, Angewandte Chemie.

[31]  C. Doherty,et al.  Combining UV Lithography and an Imprinting Technique for Patterning Metal‐Organic Frameworks , 2013, Advanced materials.

[32]  M. Dincǎ,et al.  Selective formation of biphasic thin films of metal–organic frameworks by potential-controlled cathodic electrodeposition , 2013 .

[33]  Xinsheng Peng,et al.  Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation. , 2013, Chemical communications.

[34]  J. Fransaer,et al.  High pressure, high temperature electrochemical synthesis of metal–organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies , 2013 .

[35]  J. Lammertyn,et al.  Miniaturized Layer-by-Layer Deposition of Metal–Organic Framework Coatings through Digital Microfluidics , 2013 .

[36]  O. Shekhah,et al.  Surface-anchored MOF-based photonic antennae. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  Herman Terryn,et al.  Electrochemical synthesis of thin HKUST-1 layers on copper mesh , 2012 .

[38]  F. Shi,et al.  Morphology and growth mechanism of novel zinc oxide nanostructures synthesized by a carbon thermal evaporation process , 2012 .

[39]  F. Kapteijn,et al.  Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks , 2012 .

[40]  Xian‐Wen Wei,et al.  Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks , 2012 .

[41]  J. Jasinski,et al.  Growth of zeolitic imidazolate framework-8 crystals from the solid–liquid interface , 2012 .

[42]  J. Botas,et al.  Co8-MOF-5 as electrode for supercapacitors , 2012 .

[43]  O. Shekhah,et al.  High‐Throughput Fabrication of Uniform and Homogenous MOF Coatings , 2011 .

[44]  A. Cheetham,et al.  Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks. , 2011, Journal of the American Chemical Society.

[45]  Mircea Dincă,et al.  Reductive electrosynthesis of crystalline metal-organic frameworks. , 2011, Journal of the American Chemical Society.

[46]  M. Kondo,et al.  MOF-on-MOF heteroepitaxy: perfectly oriented [Zn2(ndc)2(dabco)]n grown on [Cu2(ndc)2(dabco)]n thin films. , 2011, Dalton transactions.

[47]  E. Coronado,et al.  Assisted-assembly of coordination materials into advanced nanoarchitectures by Dip Pen nanolithography. , 2011, Chemical communications.

[48]  S. Mayo,et al.  A new method to position and functionalize metal-organic framework crystals , 2011, Nature communications.

[49]  I. Imaz,et al.  Single-crystal metal-organic framework arrays. , 2011, Journal of the American Chemical Society.

[50]  J. F. Stoddart,et al.  Chromatography in a single metal-organic framework (MOF) crystal. , 2010, Journal of the American Chemical Society.

[51]  C. Petit,et al.  Reactive adsorption of NO2 on copper-based metal-organic framework and graphite oxide/metal-organic framework composites. , 2010, ACS applied materials & interfaces.

[52]  T. Bein,et al.  Oriented nanoscale films of metal-organic frameworks by room-temperature gel-layer synthesis. , 2010, Angewandte Chemie.

[53]  G. Tendeloo,et al.  Metals@MOFs – Loading MOFs with Metal Nanoparticles for Hybrid Functions , 2010 .

[54]  Hiroaki Yamanaka,et al.  Surface nano-architecture of a metal-organic framework. , 2010, Nature materials.

[55]  Hiroshi Uji-i,et al.  Direct Patterning of Oriented Metal–Organic Framework Crystals via Control over Crystallization Kinetics in Clear Precursor Solutions , 2010, Advanced materials.

[56]  M. van der Auweraer,et al.  Patterned film growth of metal-organic frameworks based on galvanic displacement. , 2010, Chemical communications.

[57]  C. Knobler,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[58]  M. S. El-shall,et al.  Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101† , 2009 .

[59]  C. Serre,et al.  Colloidal Route for Preparing Optical Thin Films of Nanoporous Metal–Organic Frameworks , 2009 .

[60]  Jan Fransaer,et al.  Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis , 2009 .

[61]  S. Qiu,et al.  "Twin copper source" growth of metal-organic framework membrane: Cu(3)(BTC)(2) with high permeability and selectivity for recycling H(2). , 2009, Journal of the American Chemical Society.

[62]  Wuzong Zhou Microscopic study of crystal defects enriches our knowledge of materials chemistry , 2008 .

[63]  A Alec Talin,et al.  Stress-induced chemical detection using flexible metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[64]  O. Yaghi,et al.  Metal-organic frameworks with high capacity and selectivity for harmful gases , 2008, Proceedings of the National Academy of Sciences.

[65]  S. Kaskel,et al.  Catalytic properties of MIL-101. , 2008, Chemical communications.

[66]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[67]  Alistair C. McKinlay,et al.  Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. , 2008, Journal of the American Chemical Society.

[68]  C. Lamberti,et al.  Local structure of CPO-27-Ni metallorganic framework upon dehydration and coordination of NO , 2008 .

[69]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[70]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[71]  O. Shekhah,et al.  Step-by-step route for the synthesis of metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[72]  S. Kaskel,et al.  Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties , 2007 .

[73]  T. Bein,et al.  Oriented growth of the metal organic framework Cu(3)(BTC)(2)(H(2)O)(3).xH(2)O tunable with functionalized self-assembled monolayers. , 2007, Journal of the American Chemical Society.

[74]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[75]  Xiao-Ming Chen,et al.  Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. , 2006, Angewandte Chemie.

[76]  R. T. Yang,et al.  Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. , 2006, Journal of the American Chemical Society.

[77]  C. Wöll,et al.  Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). , 2005, Journal of the American Chemical Society.

[78]  뮐러 울리히,et al.  Method for electrochemical production of a crystalline porous metal organic skeleton material , 2004 .

[79]  S. Sánchez,et al.  The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole , 2003 .

[80]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[81]  R. Robson,et al.  Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments , 1989 .

[82]  R. Lehnert,et al.  Darstellung und Kristallstruktur des Mangan(II)‐ und Zink(II)‐Derivates des Imidazols , 1980 .

[83]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[84]  High-Pressure , 1875, Hall's journal of health.

[85]  Omar M Yaghi,et al.  Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. , 2005, Journal of the American Chemical Society.