Performance decay of proton-exchange membrane fuel cells under open circuit conditions induced by membrane decomposition

[1]  M. Watanabe,et al.  Influence of Decomposition Products from Perfluorosulfonic Acid Membrane on Fuel Cell Performance , 2008 .

[2]  Daniel Hissel,et al.  A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization , 2008 .

[3]  Kazuhiko Shinohara,et al.  The impact of air contaminants on PEMFC performance and durability , 2008 .

[4]  Daniel Hissel,et al.  Diagnosis methods dedicated to the localisation of failed cells within PEMFC stacks , 2008 .

[5]  Kazuhiko Shinohara,et al.  Membrane degradation mechanism during open-circuit voltage hold test , 2008 .

[6]  Kazuhiko Shinohara,et al.  Analysis of Membrane Degradation Behavior During OCV Hold Test , 2007 .

[7]  Shyam S. Kocha,et al.  The Impact of Cycle Profile on PEMFC Durability , 2007 .

[8]  Vincenzo Arcella,et al.  Resistance to peroxide degradation of Hyflon® Ion membranes , 2007 .

[9]  Mahlon Wilson,et al.  Scientific aspects of polymer electrolyte fuel cell durability and degradation. , 2007, Chemical reviews.

[10]  Kazuhiko Shinohara,et al.  Membrane Degradation Behavior during Open-Circuit Voltage Hold Test , 2007 .

[11]  Minoru Inaba,et al.  Membrane Degradation in Polymer Electrolyte Fuel Cells under Low Humidification Conditions , 2007 .

[12]  K. Ota,et al.  Consumption Rate of Pt under Potential Cycling , 2007 .

[13]  Yanghua Tang,et al.  PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 °C to 120 °C , 2006 .

[14]  David L. Wood,et al.  PEM fuel cell electrocatalyst durability measurements , 2006 .

[15]  Kazuhiko Shinohara,et al.  Phenomenon Analysis of PEFC for Automotive Use(1) Membrane Degradation Behavior During OCV Hold Test , 2006 .

[16]  Eiji Endoh,et al.  Highly Durable MEA for PEMFC Under High Temperature and Low Humidity Conditions , 2006 .

[17]  Shohji Tsushima,et al.  Degradation Mechanism of PEMFC under Open Circuit Operation , 2006 .

[18]  D. Wilkinson,et al.  Degradation of polymer electrolyte membranes , 2006 .

[19]  H. Tang,et al.  PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode , 2006 .

[20]  Minoru Inaba,et al.  Gas crossover and membrane degradation in polymer electrolyte fuel cells , 2006 .

[21]  Robert M. Darling,et al.  Model of Carbon Corrosion in PEM Fuel Cells , 2006 .

[22]  N. Garcia‐Araez,et al.  Thermodynamic studies of bromide adsorption at the Pt(111) electrode surface perchloric acid solutions: Comparison with other anions , 2006 .

[23]  James M. Fenton,et al.  Is H2O2 Involved in the Membrane Degradation Mechanism in PEMFC , 2006 .

[24]  Deborah J. Myers,et al.  Effect of voltage on platinum dissolution : Relevance to polymer electrolyte fuel cells , 2006 .

[25]  Gregory Jerkiewicz,et al.  Comprehensive study of the growth of thin oxide layers on Pt electrodes under well-defined temperature, potential, and time conditions , 2006 .

[26]  Tomoki Akita,et al.  Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. , 2006, Physical chemistry chemical physics : PCCP.

[27]  L. J. Bregoli,et al.  A Reverse-Current Decay Mechanism for Fuel Cells , 2005 .

[28]  Hubert A. Gasteiger,et al.  Aspects of the Chemical Degradation of PFSA Ionomers used in PEM Fuel Cells , 2005 .

[29]  Jingrong Yu,et al.  In Situ Analysis of Performance Degradation of a PEMFC under Nonsaturated Humidification , 2005 .

[30]  Eiji Endoh,et al.  Degradation study of MEA for PEMFCs under low humidity conditions , 2004 .

[31]  D. Curtin,et al.  Advanced materials for improved PEMFC performance and life , 2004 .

[32]  Robert M. Darling,et al.  Kinetic Model of Platinum Dissolution in PEMFCs , 2003 .

[33]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[34]  E. Herrero,et al.  Thermodynamic studies of anion adsorption at the Pt(111) electrode surface in sulfuric acid solutions , 2002 .

[35]  Hubert A. Gasteiger,et al.  The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions , 2001 .

[36]  P. Ross,et al.  Structure-relationships in electrocatalysis: oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions , 2001 .

[37]  Hubert A. Gasteiger,et al.  Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study , 2001 .

[38]  J. Barbier,et al.  Effect of anions on catalytic and electrocatalytic hydrogenations and on the electrocatalytic oxidation and evolution of hydrogen on platinum , 2000 .

[39]  Hubert A. Gasteiger,et al.  Oxygen reduction reaction on Pt(111): effects of bromide , 1999 .

[40]  Hubert A. Gasteiger,et al.  Kinetics of oxygen reduction on Pt(hkl) electrodes : Implications for the crystallite size effect with supported Pt electrocatalysts , 1997 .

[41]  H. Gasteiger,et al.  Bromide adsorption on Pt(100): rotating ring-Pt(100) disk electrode and surface X-ray scattering measurements , 1996 .

[42]  B. Conway,et al.  Electrochemical oxide film formation at noble metals as a surface-chemical process , 1995 .

[43]  A. Wiȩckowski,et al.  DETERMINATION OF THE SUM OF GIBBS EXCESSES OF SULFATE AND BISULFATE ADSORBED AT THE PT(111) ELECTRODE SURFACE USING CHRONOCOULOMETRY AND THERMODYNAMICS OF THE PERFECTLY POLARIZED ELECTRODE , 1995 .

[44]  Yunzhi Gao,et al.  Oxygen reduction on platinum single-crystal electrodes in acidic solutions , 1994 .

[45]  A. Wiȩckowski,et al.  Adsorption of anions on ultrathin metal deposits on single-crystal electrodes: Part 3. Voltammetric and radiochemical study of bisulfate adsorption on Pt(111) and Pt(poly) electrodes containing silver adatoms , 1993 .

[46]  A. Wiȩckowski,et al.  Adsorption of bisulfate anion on a Pt(100) electrode : a comparison with Pt(111) and Pt(poly) , 1993 .

[47]  M. Szklarczyk,et al.  Ionic adsorption at the solid-solution interphase using three in situ methods , 1992 .

[48]  P. Ross,et al.  Electrochemical Properties of Perfluoroalkane Disulfonic [ HSO 3 ( CF 2 ) n SO 3 H ] Acids Relevant to Fuel Cell Technology , 1992 .

[49]  M. Samant,et al.  In-situ FT-IR spectroscopic study of bisulfate and sulfate adsorption on platinum electrodes: Part 1. Sulfuric acid , 1989 .

[50]  Charles R. Martin,et al.  Oxygen Reduction at Nafion Film‐Coated Platinum Electrodes: Transport and Kinetics , 1988 .

[51]  E. Gonzalez,et al.  Electrolyte effects on oxygen reduction kinetics at platinum: A rotating ring-disc electrode analysis , 1983 .

[52]  R. Parsons,et al.  The effect of strong acid on the reactions of hydrogen and oxygen on the noble metals. A study using cyclic voltammetry and a new teflon electrode holder , 1972 .

[53]  Robert M. Darling,et al.  Mathematical Model of Platinum Movement in PEM Fuel Cells , 2005 .

[54]  G. Tamizhmani,et al.  Crystallite Size Effects of Carbon‐Supported Platinum on Oxygen Reduction in Liquid Acids , 1996 .

[55]  Yunzhi Gao,et al.  Effects of Adsorbed Bisulfate Ion, Adsorbed Hydrogen and Surface Structure on the Oxygen Reduction at Platinum Single Crystal Electrodes , 1994 .