Co-Ln mixed-metal phosphonate grids and cages as molecular magnetic refrigerants.

The synthesis, structures, and magnetic properties of six families of cobalt-lanthanide mixed-metal phosphonate complexes are reported in this Article. These six families can be divided into two structural types: grids, where the metal centers lie in a single plane, and cages. The grids include [4 × 3] {Co(8)Ln(4)}, [3 × 3] {Co(4)Ln(6)}, and [2 × 2] {Co(4)Ln(2)} families and a [4 × 4] {Co(8)Ln(8)} family where the central 2 × 2 square is rotated with respect to the external square. The cages include {Co(6)Ln(8)} and {Co(8)Ln(2)} families. Magnetic studies have been performed for these compounds, and for each family, the maximum magnetocaloric effect (MCE) has been observed for the Ln = Gd derivative, with a smaller MCE for the compounds containing magnetically anisotropic 4f-ions. The resulting entropy changes of the gadolinium derivatives are (for 3 K and 7 T) 11.8 J kg(-1) K(-1) for {Co(8)Gd(2)}; 20.0 J kg(-1) K(-1) for {Co(4)Gd(2)}; 21.1 J kg(-1) K(-1) for {Co(8)Gd(4)}; 21.4 J kg(-1) K(-1) for {Co(8)Gd(8)}; 23.6 J kg(-1) K(-1) for {Co(4)Gd(6)}; and 28.6 J kg(-1) K(-1) for {Co(6)Gd(8)}, from which we can see these values are proportional to the percentage of the gadolinium in the core.

[1]  J. Alonso,et al.  Cryogenic magnetocaloric effect in a ferromagnetic molecular dimer. , 2011, Angewandte Chemie.

[2]  F. Tuna,et al.  Lanthanide discs chill well and relax slowly. , 2011, Chemical communications.

[3]  Fu-Sheng Guo,et al.  Symmetry related [DyIII6MnIII12] cores with different magnetic anisotropies , 2011 .

[4]  E. Brechin,et al.  Molecular coolers: The case for [CuII5GdIII4] , 2011 .

[5]  E. Coronado,et al.  Beyond the spin model: exchange coupling in molecular magnets with unquenched orbital angular momenta. , 2011, Chemical Society reviews.

[6]  L. Sorace,et al.  Lanthanides in molecular magnetism: old tools in a new field. , 2011, Chemical Society reviews.

[7]  Jennifer S. Mathieson,et al.  Mapping the sequential self-assembly of heterometallic clusters: from a helix to a grid. , 2011, Angewandte Chemie.

[8]  Yan‐Zhen Zheng,et al.  Large magnetocaloric effect in a Wells-Dawson type {Ni6Gd6P6} cage. , 2011, Angewandte Chemie.

[9]  W. Wernsdorfer,et al.  Mn21Dy cluster with a record magnetization reversal barrier for a mixed 3d/4f single-molecule magnet. , 2011, Inorganic chemistry.

[10]  M. Yamashita,et al.  Structural design of easy-axis magnetic anisotropy and determination of anisotropic parameters of Ln(III)-Cu(II) single-molecule magnets. , 2011, Chemistry.

[11]  Yan‐Zhen Zheng,et al.  Co–Gd phosphonate complexes as magnetic refrigerants , 2011 .

[12]  Deqing Zhang,et al.  Heptanuclear 3d-4f cluster complexes with a coaxial double-screw-propeller topology and diverse magnetic properties. , 2010, Dalton transactions.

[13]  A. Powell,et al.  Magnetothermal studies of a series of coordination clusters built from ferromagnetically coupled {Mn(II) (4)Mn(III) (6)} supertetrahedral units. , 2010, Chemistry.

[14]  Xiao‐Ming Chen,et al.  A tetranuclear cobalt(II) chain with slow magnetization relaxation. , 2010, Dalton transactions.

[15]  J. Morales,et al.  [Mn(III)4Ln(III)4] calix[4]arene clusters as enhanced magnetic coolers and molecular magnets. , 2010, Journal of the American Chemical Society.

[16]  M. Hu,et al.  The use of phosphonates for constructing 3d-4f clusters at high oxidation states: synthesis and characterization of two unusual heterometallic CeMn complexes. , 2010, Dalton transactions.

[17]  K. Murray,et al.  A heptadecanuclear Mn(III)9Dy(III)8 cluster derived from triethanolamine with two edge sharing supertetrahedra as the core and displaying SMM behaviour. , 2010, Dalton transactions.

[18]  W. Wernsdorfer,et al.  3d-4f clusters with large spin ground states and SMM behaviour. , 2010, Dalton transactions.

[19]  E. Brechin,et al.  Recipes for enhanced molecular cooling. , 2010, Dalton transactions.

[20]  W. Wernsdorfer,et al.  Family of Mn(III)(2)Ln(2)(mu(4)-O) compounds: syntheses, structures, and magnetic properties. , 2010, Inorganic chemistry.

[21]  S. Dalgarno,et al.  A calix[4]arene 3d/4f magnetic cooler. , 2009, Angewandte Chemie.

[22]  F. Lloret,et al.  Molecular squares of Ni(II) and Cu(II): ferromagnetic exchange interaction mediated by syn-anti carboxylate-bridging. , 2009, Dalton transactions.

[23]  Nayanmoni Gogoi,et al.  Nuclearity control in molecular iron phosphates through choice of iron precursors and ancillary ligands. , 2009, Chemistry, an Asian journal.

[24]  A. Powell,et al.  Family of heterometallic semicircular Mn(III)2Ln(III)3 strands. , 2009, Inorganic chemistry.

[25]  Louise N. Dawe,et al.  Magnetic [n x n] (n = 2-5) grids by directed self-assembly. , 2009, Inorganic chemistry.

[26]  E. Pasca,et al.  Magnetocaloric effect in spin-degenerated molecular nanomagnets , 2009 .

[27]  Dong Guo,et al.  Co(II) molecular square with single-molecule magnet properties. , 2009, Inorganic chemistry.

[28]  W. Wernsdorfer,et al.  Enhancing the quantum properties of manganese-lanthanide single-molecule magnets: observation of quantum tunneling steps in the hysteresis loops of a {Mn12Gd} cluster. , 2009, Angewandte Chemie.

[29]  Xiao‐Ming Chen,et al.  Probing single-chain magnets in a family of linear chain compounds constructed by magnetically anisotropic metal-ions and cyclohexane-1,2-dicarboxylate analogues. , 2008, Inorganic Chemistry.

[30]  V. Pecharsky,et al.  Thirty years of near room temperature magnetic cooling: Where we are today and future prospects , 2008 .

[31]  A. Candini,et al.  Mixed-valent Mn supertetrahedra and planar discs as enhanced magnetic coolers. , 2008, Journal of the American Chemical Society.

[32]  W. Wernsdorfer,et al.  Heterometallic [Mn5-Ln4] single-molecule magnets with high anisotropy barriers. , 2008, Chemistry.

[33]  A. Clearfield,et al.  Mixed-valent dodecanuclear vanadium cluster encapsulating chloride anions and its reaction to form a "bowl"-shaped cluster. , 2008, Inorganic chemistry.

[34]  A. Clearfield,et al.  Synthesis and characterization of high nuclearity iron(III) phosphonate molecular clusters. , 2008, Inorganic chemistry.

[35]  A. Clearfield,et al.  Solvothermal synthesis and characterization of two high-nuclearity mixed-valent manganese phosphonate clusters. , 2008, Inorganic chemistry.

[36]  S. Teat,et al.  Synthesis and structural and magnetic characterization of cobalt(II) phosphonate cage compounds. , 2008, Inorganic chemistry.

[37]  Surajit Ghosh,et al.  A distorted cubic tetranuclear copper(II) phosphonate cage with a double-four-ring-type core. , 2008, Inorganic chemistry.

[38]  Louise N. Dawe,et al.  Coordination "oligomers" in self-assembly reactions of some "tritopic" picolinic dihydrazone ligands-mononuclear, dinuclear, hexanuclear, heptanuclear, and nonanuclear examples. , 2008, Inorganic chemistry.

[39]  F. Tuna,et al.  A series of nickel phosphonate-carboxylate cages. , 2007, Chemical communications.

[40]  Louise N. Dawe,et al.  A self-assembled, magnetically coupled square Cu16 4x[2x2] grid. , 2007, Angewandte Chemie.

[41]  Louise N. Dawe,et al.  Supramolecular self-assembled polynuclear complexes from tritopic, tetratopic, and pentatopic ligands: structural, magnetic and surface studies. , 2007, Inorganic chemistry.

[42]  F. Tuna,et al.  Synthesis of molecular vanadium(III) phosphonates. , 2007, Angewandte Chemie.

[43]  W. Wernsdorfer,et al.  A bell-shaped Mn11Gd2 single-molecule magnet. , 2007, Journal of the American Chemical Society.

[44]  E. McInnes,et al.  1,2,3-triazolate-bridged tetradecametallic transition metal clusters [M14(L)6O6(OMe)18X6] (M=FeIII, CrIII and VIII/IV) and related compounds: ground-state spins ranging from S=0 to S=25 and spin-enhanced magnetocaloric effect. , 2007, Inorganic chemistry.

[45]  M. Affronte,et al.  A ferromagnetic mixed-valent Mn supertetrahedron: towards low-temperature magnetic refrigeration with molecular clusters. , 2007, Angewandte Chemie.

[46]  Li‐Min Zheng,et al.  Tridecanuclear and docosanuclear manganese phosphonate clusters with slow magnetic relaxation. , 2007, Inorganic chemistry.

[47]  J. Richter,et al.  Enhanced magnetocaloric effect in frustrated magnetic molecules with icosahedral symmetry , 2007, cond-mat/0703480.

[48]  K. Bernot,et al.  Effects of 3d-4f magnetic exchange interactions on the dynamics of the magnetization of Dy(III)-M(II)-Dy(III) trinuclear clusters. , 2007, Chemistry.

[49]  Wei‐Xiong Zhang,et al.  Coexistence of spin frustration and long-range magnetic ordering in a triangular Co(II)3(mu3-OH)-based two-dimensional compound. , 2006, Chemical communications.

[50]  Vitalij K. Pecharsky,et al.  Advanced magnetocaloric materials: What does the future hold? , 2006 .

[51]  S. Teat,et al.  Synthesis and characterization of mixed-valent manganese phosphonate cage complexes. , 2006, Chemistry.

[52]  Wei‐Xiong Zhang,et al.  Assembling magnetic nanowires into networks: a layered CoII carboxylate coordination polymer exhibiting single-chain-magnet behavior. , 2006, Angewandte Chemie.

[53]  W. Wernsdorfer,et al.  A nonanuclear dysprosium(III)-copper(II) complex exhibiting single-molecule magnet behavior with very slow zero-field relaxation. , 2006, Angewandte Chemie.

[54]  A. Clearfield,et al.  Oxo-, hydroxo-, and peroxo-bridged Fe(III) phosphonate cages. , 2006, Journal of the American Chemical Society.

[55]  Louise N. Dawe,et al.  Self-assembled polymetallic square grids ([2 × 2] M4, [3 × 3] M9) and trigonal bipyramidal clusters (M5)—structural and magnetic properties , 2006 .

[56]  Louise N. Dawe,et al.  Supramolecular 'flat' Mn9 grid complexes--towards functional molecular platforms. , 2006, Dalton transactions.

[57]  M. Affronte,et al.  Magnetothermal properties of molecule-based materials , 2006, cond-mat/0603368.

[58]  G. Aromí,et al.  Synthesis of 3d metallic single-molecule magnets , 2006 .

[59]  H. Nojiri,et al.  Oximate-bridged trinuclear Dy-Cu-Dy complex behaving as a single-molecule magnet and its mechanistic investigation. , 2006, Journal of the American Chemical Society.

[60]  L. Thompson,et al.  Polynuclear manganese grids and clusters—A magnetic perspective , 2005 .

[61]  W. Wernsdorfer,et al.  Slow relaxation of magnetisation in an octanuclear cobalt(II) phosphonate cage complex. , 2005, Chemical communications.

[62]  W. Wernsdorfer,et al.  Phosphonate ligands stabilize mixed-valent {Mn(III) (20-x)Mn(II)x} clusters with large spin and coercivity. , 2005, Angewandte Chemie.

[63]  W. Wernsdorfer,et al.  The search for 3d-4f single-molecule magnets: synthesis, structure and magnetic properties of a [Mn(III)2Dy(III)2] cluster. , 2005, Chemical communications.

[64]  E. McInnes,et al.  Spin-enhanced magnetocaloric effect in molecular nanomagnets , 2005, cond-mat/0507407.

[65]  W. Wernsdorfer,et al.  Initial observation of magnetization hysteresis and quantum tunneling in mixed manganese-lanthanide single-molecule magnets. , 2004, Journal of the American Chemical Society.

[66]  H. Güdel,et al.  Nickel pivalate complexes: structural variations and magnetic susceptibility and inelastic neutron scattering studies. , 2004, Dalton transactions.

[67]  V. Pecoraro,et al.  Synthesis, structure, and magnetic properties of a large lanthanide-transition-metal single-molecule magnet. , 2004, Angewandte Chemie.

[68]  Mario Ruben,et al.  Grid-type metal ion architectures: functional metallosupramolecular arrays. , 2004, Angewandte Chemie.

[69]  Louise N. Dawe,et al.  Supramolecular Mn(II) and Mn(II)/Mn(III) grid complexes with [Mn9(mu2-O)12] core structures. Structural, magnetic, and redox properties and surface studies. , 2004, Inorganic chemistry.

[70]  R. Boča Zero-field splitting in metal complexes , 2004 .

[71]  N. Re,et al.  A tetranuclear 3d-4f single molecule magnet: [CuIILTbIII(hfac)2]2. , 2004, Journal of the American Chemical Society.

[72]  W. Wernsdorfer,et al.  Template synthesis and single-molecule magnetism properties of a complex with spin S = 16 and a [Mn8O8]8+ saddle-like core. , 2003, Journal of the American Chemical Society.

[73]  Xiangzhao Meng,et al.  Review on research of room temperature magnetic refrigeration , 2003 .

[74]  J. Raftery,et al.  Synthesis and characterization of iron(III) phosphonate cage complexes. , 2003, Angewandte Chemie.

[75]  R. Sessoli,et al.  Quantum tunneling of magnetization and related phenomena in molecular materials. , 2003, Angewandte Chemie.

[76]  David O. Miller,et al.  Self-assembled supramolecular M9 (Mn(II), Fe(III), Zn(II)), M5 (Fe(III)), and [M3]2 (Pb(II)) complexes: structural, magnetic, and Mössbauer properties. , 2003, Inorganic chemistry.

[77]  Dante Gatteschi,et al.  Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. , 2002, Chemical reviews.

[78]  X. X. Zhang,et al.  Anisotropic magnetocaloric effect in nanostructured magnetic clusters. , 2001, Physical review letters.

[79]  C. J. Matthews,et al.  Synthesis, Structure, and Magnetism of a Series of Self-Assembled Polynuclear Mn(II), Co(II), and Cu(II) Cluster Complexes , 2001 .

[80]  M. Carducci,et al.  Lanthanide coordination with alpha-amino acids under near physiological pH conditions: polymetallic complexes containing the cubane-like [Ln4(mu3-OH)4]8+ cluster core. , 2001, Inorganic chemistry.

[81]  S. Gubin,et al.  Magnetic molecular clusters as promising materials for refrigeration in low-temperature regions , 2001 .

[82]  C. J. Matthews,et al.  Supramolecular metal helicate structures with incomplete metal ion coordination , 2001 .

[83]  D. Gatteschi Single-molecule Magnets , 2000 .

[84]  David K. Henderson,et al.  Inter-ligand reactions: in situ formation of new polydentate ligands , 2000 .

[85]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[86]  T. Brill,et al.  Spectroscopy of Hydrothermal Reactions. 12. Acid-Assisted Hydrothermolysis of Aliphatic Nitriles at 150−260 °C and 275 bar , 1999 .

[87]  K. Gschneidner,et al.  Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .

[88]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[89]  A. W. Addison,et al.  Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate , 1984 .

[90]  A. P. Gingsberg Magnetic exchange in transition metal complexes vi: Aspects of exchange coupling in magnetic cluster complexes , 1971 .

[91]  M. E. Lines,et al.  Orbital Angular Momentum in the Theory of Paramagnetic Clusters , 1971 .

[92]  Clément,et al.  Versuche über das in den Gasarten enthaltene Wasser und über einige Barytsalze , 1803 .