Comparing carbon nanotube transistors - the ideal choice: a novel tunneling device design

Three different carbon nanotube (CN) field-effect transistor (CNFET) designs are compared by simulation and experiment. While a C-CNFET with a doping profile similar to a "conventional" (referred to as C-CNFET in the following) p-or n-MOSFET in principle exhibits superior device characteristics when compared with a Schottky barrier CNFET, we find that aggressively scaled C-CNFET devices suffer from "charge pile-up" in the channel. This effect which is also known to occur in floating body silicon transistors deteriorates the C-CNFET off-state substantially and ultimately limits the achievable on/off-current ratio. In order to overcome this obstacle we explore the possibility of using CNs as gate-controlled tunneling devices (T-CNFETs). The T-CNFET benefits from a steep inverse subthreshold slope and a well controlled off-state while at the same time delivering high performance on-state characteristics. According to our simulation, the T-CNFET is the ideal transistor design for an ultrathin body three-terminal device like the CNFET.

[1]  H. Flietner,et al.  The E(k) Relation for a Two‐Band Scheme of Semiconductors and the Application to the Metal‐Semiconductor Contact , 1972 .

[2]  K. K. Young Short-channel effect in fully depleted SOI MOSFETs , 1989 .

[3]  J. Colinge Silicon-on-Insulator Technology: Materials to VLSI , 1991 .

[4]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .

[5]  W. Hansch,et al.  Performance Improvement in Vertical Surface Tunneling Transistors by a Boron Surface Phase , 2001 .

[6]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[7]  H. Dai,et al.  High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates. , 2002, Nature materials.

[8]  Richard Martel,et al.  Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes , 2002 .

[9]  Jing Guo,et al.  Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors , 2002, Digest. International Electron Devices Meeting,.

[10]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[11]  S. Wind,et al.  Carbon nanotube electronics , 2002, Digest. International Electron Devices Meeting,.

[12]  S.Heinze,et al.  Carbon Nanotubes as Schottky Barrier Transistors , 2002, cond-mat/0207397.

[13]  David L. Pulfrey,et al.  Electrostatics of coaxial Schottky-barrier nanotube field-effect transistors , 2003 .

[14]  Stefan Heinze,et al.  Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors , 2003 .

[15]  S. Wind,et al.  Lateral scaling in carbon-nanotube field-effect transistors. , 2003, Physical review letters.

[16]  M. Radosavljevic,et al.  Drain voltage scaling in carbon nanotube transistors , 2003, cond-mat/0305570.

[17]  Junji Koga,et al.  Experimental study on carrier transport mechanisms in double- and single-gate ultrathin-body MOSFETs - Coulomb scattering, volume inversion, and /spl delta/T/sub SOI/-induced scattering , 2003, IEEE International Electron Devices Meeting 2003.

[18]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[19]  I. Eisele,et al.  Performance Enhancement of Vertical Tunnel Field-Effect Transistor with SiGe in the δp+ Layer , 2004 .

[20]  David L. Pulfrey,et al.  Quantum capacitance in nanoscale device modeling , 2004 .

[21]  M. Radosavljevic,et al.  Tunneling versus thermionic emission in one-dimensional semiconductors. , 2004, Physical review letters.

[22]  J. Appenzeller,et al.  Band-to-band tunneling in carbon nanotube field-effect transistors. , 2004, Physical review letters.

[23]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[24]  Mark S. Lundstrom,et al.  Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[25]  Mark S. Lundstrom,et al.  A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors , 2003, IEEE Transactions on Electron Devices.

[26]  M. Lundstrom,et al.  Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays , 2004, cond-mat/0406494.

[27]  S. Sedlmaier,et al.  Vertical tunnel field-effect transistor , 2004, IEEE Transactions on Electron Devices.

[28]  J. Chen,et al.  Self-aligned carbon nanotube transistors with novel chemical doping , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[29]  P. Avouris,et al.  High-performance dual-gate carbon nanotube FETs with 40-nm gate length , 2005, IEEE Electron Device Letters.

[30]  H. Dai,et al.  High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. , 2004, Nano letters.

[31]  J. Knoch,et al.  A novel concept for field-effect transistors - the tunneling carbon nanotube FET , 2005, 63rd Device Research Conference Digest, 2005. DRC '05..

[32]  Phaedon Avouris,et al.  The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. , 2005, Nano letters.

[33]  Joachim Knoch,et al.  Comparison of transport properties in carbon nanotube field-effect transistors with Schottky contacts and doped source/drain contacts , 2005 .

[34]  J. Knoch,et al.  High-performance carbon nanotube field-effect transistor with tunable polarities , 2005, IEEE Transactions on Nanotechnology.

[35]  Joachim Knoch,et al.  Carbon Nanotube Field-effect Transistors-The Importance of Being Small , 2006 .