A Residue-to-Binary Converter for the Extended Four-Moduli Set $\{2^{n}-1, 2^{n}+1, 2^{2n}+1, 2^{2n+p}\} $

This brief presents a residue-to-binary converter for the moduli set <inline-formula> <tex-math notation="LaTeX">$\{2^{n}-1, 2^{n}+1, 2^{2n}+1, 2^{2n+p}\} $ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> is a positive integer and <inline-formula> <tex-math notation="LaTeX">$0\leq p \leq n-2 $ </tex-math></inline-formula>. The converter consists of three simplified <inline-formula> <tex-math notation="LaTeX">$4n$ </tex-math></inline-formula>-bit carry-save adders (CSAs) along with a modulo <inline-formula> <tex-math notation="LaTeX">$(2^{4n}-1) $ </tex-math></inline-formula> adder. The main contribution of this brief is reducing the requirements of the proposed CSA network, which has impacted the area, delay, power and energy. Compared with four-moduli and five-moduli sets that have the dynamic range <inline-formula> <tex-math notation="LaTeX">$2^{v}(2^{4n}-1) $ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$ v=n {~\mbox {or }} 2n$ </tex-math></inline-formula>, the proposed converter resulted in the average area, delay, power, and energy reductions of 22.7%, 9.2%, 17.8%, and 24.5%, respectively. Moreover, the throughput rate per unit area has been improved by an average of 48.7%.

[1]  Amir Sabbagh Molahosseini ASIC and FPGA Implementations of Modern 4-Moduli RNS Reverse Converters Using Distinct Configurations , 2015 .

[2]  Chip-Hong Chang,et al.  A Residue-to-Binary Converter for a New Five-Moduli Set , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Thomas Plantard,et al.  Efficient RNS Bases for Cryptography , 2005 .

[4]  Ahmad A. Hiasat,et al.  A Suggestion for a Fast Residue Multiplier for a Family of Moduli of the Form (2n - (2p [plusmn] 1)) , 2004, Comput. J..

[5]  Ahmad A. Hiasat,et al.  A Reverse Converter and Sign Detectors for an Extended RNS Five-Moduli Set , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Thanos Stouraitis,et al.  Efficient RNS Implementation of Elliptic Curve Point Multiplication Over ${\rm GF}(p)$ , 2013, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[7]  Omid Kavehei,et al.  Efficient Reverse Converter Designs for the New 4-Moduli Sets $\{2^{n} -1, 2^{n}, 2^{n} +1, 2^{2n + 1}-1\}$ and $\{2^{n} -1, 2^{n} +1, 2^{2n}, 2^{2n} +1\}$ Based on New CRTs , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Partha Garai,et al.  Design Of A Reconfigurable DSP Processor With Bit Efficient Residue Number System , 2012, VLSIC 2012.

[9]  L. Sousa,et al.  MRC-Based RNS Reverse Converters for the Four-Moduli Sets $\{2^{n} + 1, 2^{n} - 1, 2^{n}, 2^{2n + 1} - 1\}$ and $ \{2^{n} + 1, 2^{n} - 1, 2^{2n}, 2^{2n + 1} - 1\}$ , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  P. V. Ananda Mohan,et al.  RNS-to-Binary Converters for Two Four-Moduli Sets $\{2^{n}-1,2^{n},2^{n}+1,2^{{n}+1}-1\}$ and $\{2^{n}-1,2^{n},2^{n}+1,2^{{n}+1}+1\}$ , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Ghassem Jaberipur,et al.  A New Residue Number System with 5-Moduli Set: {22q, 2q±3, 2q±1} , 2015, Comput. J..

[12]  L. Sousa,et al.  On the Design of RNS Reverse Converters for the Four-Moduli Set { 2 n + 1 , 2 n − 1 , 2 n , 2 n + 1 + 1 } , .

[13]  Ricardo Chaves,et al.  On the Design of RNS Reverse Converters for the Four-Moduli Set ${\bf\{2^{\mmb n}+1, 2^{\mmb n}-1, 2^{\mmb n}, 2^{{\mmb n}+1}+1\}}$ , 2013, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[14]  Leonel Sousa,et al.  Elliptic Curve point multiplication on GPUs , 2010, ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors.

[15]  Mehdi Hosseinzadeh,et al.  An Efficient Component for Designing Signed Reverse Converters for a Class of RNS Moduli Sets of Composite Form $\{2^{k}, 2^{P}-1\}$ , 2017, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[16]  Ricardo Chaves,et al.  RNS Arithmetic Units for Modulo {2^n+-k} , 2012, 2012 15th Euromicro Conference on Digital System Design.

[17]  Yuke Wang,et al.  A study of the residue-to-binary converters for the three-moduli sets , 2003 .

[18]  Ming-Hwa Sheu,et al.  Efficient Reverse Converter Design for New Adaptable Four-Moduli Set {2n + k, 2n + 1, 2n - 1, 22n + 1} , 2013, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[19]  Stanislaw J. Piestrak,et al.  Design of Reverse Converters for General RNS Moduli Sets $\{ 2^{k}, 2^{n}-1, 2^{n}+1, 2^{n+1}-1 \}$ and $\{ 2^{k}, 2^{n}-1, 2^{n}+1, 2^{n-1}-1 \}$ ($n$ even) , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Stanislaw J. Piestrak,et al.  Design of Reverse Converters for the New RNS Moduli Set $\{2^{n}+1,2^{n}-1,2^{n},2^{n-1}+1\}$ ($n$ odd) , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  Ricardo Chaves,et al.  Method to Design General RNS Reverse Converters for Extended Moduli Sets , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  Ricardo Chaves,et al.  RNS Reverse Converters for Moduli Sets With Dynamic Ranges up to $(8n+1)$ -bit , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Ming-Hwa Sheu,et al.  Efficient VLSI design of a reverse RNS converter for new flexible 4-moduli set (2p+k, 2p+1, 2p−1, 22p+1) , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[24]  Chip-Hong Chang,et al.  An Efficient Reverse Converter for the 4-Moduli Set 2 n 1 , 2 n , 2 n + 1 , 22 n + 1 Based on the New Chinese Remainder Theorem , 2001 .

[25]  A. S. Molahosseini,et al.  Efficient reverse converter designs for the new 4-moduli sets {2n - 1, 2n, 2n + 1, 22n+1 - 1} and {2n - 1, 2n + 1, 22n, 22n + 1} based on new CRTs , 2010 .

[26]  Yuke Wang New Chinese remainder theorems , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[27]  Ahmad A. Hiasat,et al.  VLSI implementation of new arithmetic residue to binary decoders , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[28]  Chip-Hong Chang,et al.  An efficient reverse converter for the 4-moduli set {2/sup n/ - 1, 2/sup n/, 2/sup n/ + 1, 2/sup 2n/ + 1} based on the new Chinese remainder theorem , 2003 .

[29]  Richard I. Tanaka,et al.  Residue arithmetic and its applications to computer technology , 1967 .

[30]  Haridimos T. Vergos,et al.  High-Speed Parallel-Prefix Modulo 2n-1 Adders , 2000, IEEE Trans. Computers.