Regular ArticleSignal Selection in High-Resolution NMR by Pulsed Field Gradients: II. The Design of Gradient Pulse Sequences☆

We describe a new and powerful computer program called TRIPLE GRADIENT which calculates optimized pulsed field gradient sequences for specific coherence pathway selection or rejection. Sequences can be computed for gradient coils acting along one, two, or three perpendicular axes. The program is based on the computational minimization of a penalty function formed from the summed amplitudes of the unwanted signals. The underlying mathematical analysis makes use of a vectorial representation of the way in which a gradient sequence suppresses different signals. It is argued that experiments using well-calculated gradient sequences are quicker and generally perform better than those using extensive phase cycling, especially when suppressing extremely strong solvent signals, and it is shown that in many cases gradient experiments of optimal signal-to-noise ratio can be performed. These claims are illustrated by spectra obtained from an HQQC experiment.