Semi-supervised sparse metric learning using alternating linearization optimization
暂无分享,去创建一个
Peng Liu | Shiqian Ma | Dacheng Tao | Jianzhuang Liu | Wei Liu | Shiqian Ma | D. Tao | Peng Liu | Jianzhuang Liu | Wei Liu
[1] Kaizhu Huang,et al. Sparse Metric Learning via Smooth Optimization , 2009, NIPS.
[2] Raymond J. Mooney,et al. Integrating constraints and metric learning in semi-supervised clustering , 2004, ICML.
[3] Marcel Worring,et al. Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[4] Hui Xiong,et al. Enhancing semi-supervised clustering: a feature projection perspective , 2007, KDD '07.
[5] Wei Liu,et al. Semi-supervised distance metric learning for Collaborative Image Retrieval , 2008, CVPR.
[6] Glenn Fung,et al. Learning sparse metrics via linear programming , 2006, KDD '06.
[7] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[8] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[9] Michael I. Jordan,et al. Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.
[10] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[11] Thomas S. Huang,et al. Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..
[12] Inderjit S. Dhillon,et al. Semi-supervised graph clustering: a kernel approach , 2005, ICML '05.
[13] Inderjit S. Dhillon,et al. Structured metric learning for high dimensional problems , 2008, KDD.
[14] Wei Liu,et al. Transductive Component Analysis , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[15] O. SIAMJ.,et al. SMOOTH OPTIMIZATION APPROACH FOR SPARSE COVARIANCE SELECTION∗ , 2009 .
[16] Xiaojin Zhu,et al. --1 CONTENTS , 2006 .
[17] Geoffrey E. Hinton,et al. Neighbourhood Components Analysis , 2004, NIPS.
[18] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[19] Inderjit S. Dhillon,et al. Information-theoretic metric learning , 2006, ICML '07.
[20] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[21] Kilian Q. Weinberger,et al. Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.
[22] Xian-Sheng Hua,et al. MSRA-MM: Bridging Research and Industrial Societies for Multimedia Information Retrieval , 2009 .
[23] Tat-Seng Chua,et al. An efficient sparse metric learning in high-dimensional space via l1-penalized log-determinant regularization , 2009, ICML '09.
[24] Raymond J. Mooney,et al. A probabilistic framework for semi-supervised clustering , 2004, KDD.
[25] Claire Cardie,et al. Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584. Constrained K-means Clustering with Background Knowledge , 2022 .
[26] Amir Globerson,et al. Metric Learning by Collapsing Classes , 2005, NIPS.
[27] Wei Liu,et al. Constrained Metric Learning Via Distance Gap Maximization , 2010, AAAI.
[28] Tat-Seng Chua,et al. NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.
[29] Tomer Hertz,et al. Learning a Mahalanobis Metric from Equivalence Constraints , 2005, J. Mach. Learn. Res..