Response of interface traps during high-temperature anneals (MOSFETs)

Isochronal-annealing measurements were performed on n-channel Si-gate metal-oxide-semiconductor field-effect transistors (MOSFETs) to determine the temperature at which interface traps anneal following exposure to 10-keV X-rays. All five of the processes sampled exhibited annealing by 300 degrees C, although this annealing was generally preceded by an increase in the number of interface traps (N/sub IT/) at lower temperatures. In particular, N/sub IT/ for two of the processes increased at 100 degrees C. Additional annealing experiments at 100 degrees C for a week are consistent with these results. The implications of these results for high-temperature accelerated-annealing rebound testing are discussed. >

[1]  M. L. Reed,et al.  Chemistry of Si‐SiO2 interface trap annealing , 1988 .

[2]  Daniel M. Fleetwood,et al.  Strategies for lot acceptance testing using CMOS transistors and ICs , 1989 .

[3]  P. S. Winokur,et al.  Field- and Time-Dependent Radiation Effects at the SiO2/Si Interface of Hardened MOS Capacitors , 1977, IEEE Transactions on Nuclear Science.

[4]  K. L. Brower Passivation of paramagnetic Si‐SiO2 interface states with molecular hydrogen , 1988 .

[5]  Brower Kl,et al.  Kinetics of H2 passivation of Pb centers at the (111) Si-SiO2 interface. , 1988 .

[6]  P. Balk,et al.  Elimination and Generation of Si ‐ SiO2 Interface Traps by Low Temperature Hydrogen Annealing , 1988 .

[7]  Dennis B. Brown,et al.  Time dependence of interface trap formation in MOSFETs following pulsed irradiation , 1988 .

[8]  P. Balk,et al.  Generation of interface states in MOS systems , 1982 .

[9]  H. Maes,et al.  High‐temperature H2 anneal of interface defects in electron‐beam‐irradiated MNOS structures , 1980 .

[10]  T. W. Hickmott Annealing of surface states in polycrystalline‐silicon–gate capacitors , 1977 .

[11]  P. V. Dressendorfer,et al.  A Reevaluation of Worst-Case Postirradiation Response for Hardened MOS Transistors , 1987, IEEE Transactions on Nuclear Science.

[12]  P. S. Winokur,et al.  Two‐stage process for buildup of radiation‐induced interface states , 1979 .

[13]  Herman Maes,et al.  High-temperature hydrogen anneal of mnos structures , 1978 .

[14]  P. S. Winokur,et al.  Physical Mechanisms Contributing to Device "Rebound" , 1984, IEEE Transactions on Nuclear Science.

[15]  M. L. Reed,et al.  Two Reaction Model of Interface Trap Annealing , 1986, IEEE Transactions on Nuclear Science.

[16]  H. E. Boesch,et al.  The nature of the trapped hole annealing process , 1989 .

[17]  G. Groeseneken,et al.  A reliable approach to charge-pumping measurements in MOS transistors , 1984, IEEE Transactions on Electron Devices.

[18]  V. Deline,et al.  Deuterium at the Si‐SiO2 interface detected by secondary‐ion mass spectrometry , 1981 .

[19]  C. Sah,et al.  Annealing of interface states on oxidized silicon during chip bonding , 1987 .

[20]  Andre Stesmans,et al.  Maximum density of Pb centers at the (111) Si/SiO2 interface after vacuum anneal , 1990 .

[21]  K. L. Brower,et al.  Electron paramagnetic resonance and capacitance‐voltage studies of ultraviolet irradiated Si‐SiO2 interfaces , 1990 .

[22]  B. E. Deal,et al.  Low‐Temperature Reduction of Fast Surface States Associated with Thermally Oxidized Silicon , 1971 .

[23]  Hydrogenation effect in an n‐channel metal‐oxide‐semiconductor field‐effect transistor , 1991 .

[24]  A. H. Johnston,et al.  A comparison of methods for total dose testing of bulk CMOS and CMOS/SOS devices , 1990 .

[25]  P. S. Winokur,et al.  Correlating the Radiation Response of MOS Capacitors and Transistors , 1984, IEEE Transactions on Nuclear Science.

[26]  James D. Plummer,et al.  Time Resolved Annealing of Interface Traps in Polysilicon Gate Metal‐Oxide‐Silicon Capacitors , 1987 .

[27]  R. L. Pease,et al.  An improved standard total dose test for CMOS space electronics , 1989 .

[28]  K. L. Brower,et al.  Chemical kinetics of hydrogen and (111)Si-SiO2 interface defects , 1990 .

[29]  D. Biegelsen,et al.  Low‐temperature annealing and hydrogenation of defects at the Si–SiO2 interface , 1981 .

[30]  S. D. Brotherton,et al.  An investigation of the influence of low-temperature annealing treatments on the interface state density at the Si-SiO2 , 1975 .

[31]  Dragan Pantic Benefits of Integrated-Circuit Burn-In to Obtain High Reliability Parts , 1986, IEEE Transactions on Reliability.

[32]  F. V. Thome,et al.  High-temperature silicon-on-insulator electronics for space nuclear power systems: requirements and feasibility , 1988 .