Reversible transformations from pure to mixed states and the unique measure of information

Transformations from pure to mixed states are usually associated with information loss and irreversibility. Here, a protocol is demonstrated allowing one to make these transformations reversible. The pure states are diluted with a random noise source. Using this protocol one can study optimal transformations between states, and from this derive the unique measure of information. This is compared with irreversible transformations where one does not have access to noise. The ideas presented here shed some light on attempts to understand entanglement manipulations and the inevitable irreversibility encountered there where one finds that mixed states can contain 'bound entanglement'.

[1]  K. Audenaert,et al.  Entanglement cost under positive-partial-transpose-preserving operations. , 2003, Physical review letters.

[2]  M. Horodecki,et al.  Local information as a resource in distributed quantum systems. , 2002, Physical review letters.

[3]  M. Horodecki,et al.  Are the laws of entanglement theory thermodynamical? , 2002, Physical review letters.

[4]  J. Oppenheim,et al.  Thermodynamical approach to quantifying quantum correlations. , 2001, Physical review letters.

[5]  J. Cirac,et al.  Irreversibility in asymptotic manipulations of entanglement. , 2001, Physical review letters.

[6]  E. Rains Erratum: Bound on distillable entanglement [Phys. Rev. A 60, 179 (1999)] , 2000 .

[7]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[8]  E. Rains,et al.  Bound on distillable entanglement , 1998, quant-ph/9809082.

[9]  G. Vidal On the characterization of entanglement , 1998 .

[10]  M. Plenio,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[11]  S. Popescu,et al.  Thermodynamics and the measure of entanglement , 1996, quant-ph/9610044.

[12]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[13]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[14]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[15]  Mary Beth Ruskai,et al.  BEYOND STRONG SUBADDITIVITY? IMPROVED BOUNDS ON THE CONTRACTION OF GENERALIZED RELATIVE ENTROPY , 1994 .

[16]  M. Fannes A continuity property of the entropy density for spin lattice systems , 1973 .

[17]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .