Dark matter as the signal of grand unification

We argue that the existence of dark matter (DM) is a possible consequence of grand unification (GUT) symmetry breaking. In GUTs like SO(10), discrete Z{sub 2} matter parity (-1){sup 3(B-L)} survives despite broken B-L, and group theory uniquely determines that the only possible Z{sub 2}-odd matter multiplets belong to representation 16. We construct the minimal nonsupersymmetric SO(10) model containing one scalar 16 for DM and study its predictions below M{sub G}. We find that electroweak symmetry breaking occurs radiatively due to DM couplings to the standard model Higgs boson. For thermal relic DM the mass range M{sub DM}{approx}O(0.1-1) TeV is predicted by model perturbativity up to M{sub G}. For M{sub DM}{approx}O(1) TeV to explain the observed cosmic ray anomalies with DM decays, there exists a lower bound on the spin-independent direct detection cross section within the reach of planned experiments.

[1]  S. Dimopoulos,et al.  Decaying Dark Matter As a Probe of Unification And TeV Spectroscopy , 2009, 0904.2789.

[2]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[3]  F. Ling,et al.  Scalar multiplet dark matter , 2009, 0903.4010.

[4]  D.R.T. Jones,et al.  Bounds on scalar masses in two Higgs doublet models , 2009, 0903.2856.

[5]  S. Dimopoulos,et al.  Astrophysical probes of unification , 2008, 0812.2075.

[6]  A. Strumia,et al.  Decaying dark matter can explain the e? excesses , 2008, 0811.4153.

[7]  G. Bertone,et al.  Gamma-ray and radio tests of the e? excess from DM annihilations , 2008, 0811.3744.

[8]  A. R. Bazer-Bachi,et al.  Energy spectrum of cosmic-ray electrons at TeV energies. , 2008, Physical review letters.

[9]  J. W. Watts,et al.  An excess of cosmic ray electrons at energies of 300–800 GeV , 2008, Nature.

[10]  A. Ibarra,et al.  Decaying Dark Matter and the PAMELA Anomaly , 2008, 0811.1555.

[11]  Paul Langacker,et al.  Complex Singlet Extension of the Standard Model , 2008, 0811.0393.

[12]  P. Brun,et al.  Constraints on WIMP dark matter from the high energy PAMELA p/p data. , 2008, Physical review letters.

[13]  M Nagni,et al.  New measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation. , 2008, Physical review letters.

[14]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[15]  Mario Kadastik,et al.  Model-independent implications of the e , p cosmic ray spectra on properties of Dark Matter , 2008, 0809.2409.

[16]  F. Takahashi,et al.  Gamma rays and positrons from a decaying hidden gauge boson , 2008, 0809.0792.

[17]  Claude Duhr,et al.  FeynRules - Feynman rules made easy , 2008, Comput. Phys. Commun..

[18]  A. Semenov,et al.  Dark matter direct detection rate in a generic model with micrOMEGAs_2.2 , 2008, Comput. Phys. Commun..

[19]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[20]  R. W. Ogburn,et al.  Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the soudan underground laboratory. , 2008, Physical review letters.

[21]  M. Tytgat,et al.  Electroweak symmetry breaking induced by dark matter , 2007, 0707.0633.

[22]  Paul Langacker,et al.  CERN LHC phenomenology of an extended standard model with a real scalar singlet , 2007, 0706.4311.

[23]  D. Suematsu Leptogenesis and dark matter unified in a non-SUSY model for neutrino masses , 2007, 0706.2401.

[24]  K. Hamaguchi,et al.  Gravitino dark matter in R-parity breaking vacua , 2007, hep-ph/0702184.

[25]  M. Tytgat,et al.  The inert doublet model: an archetype for dark matter , 2006, hep-ph/0612275.

[26]  D. Suematsu,et al.  Neutrino masses and CDM in a non-supersymmetric model , 2006, hep-ph/0610006.

[27]  A. Pukhov,et al.  micrOMEGAs 2.0.7: a program to calculate the relic density of dark matter in a generic model , 2006, Comput. Phys. Commun..

[28]  E. Ma Verifiable radiative seesaw mechanism of neutrino mass and dark matter , 2006, hep-ph/0601225.

[29]  E. Aprile,et al.  The XENON dark matter search experiment , 2004, 1206.6288.

[30]  C. Burgess,et al.  The minimal model of nonbaryonic dark matter: A singlet scalar , 2000, hep-ph/0011335.

[31]  D.R.T. Jones,et al.  The Standard model effective potential at two loops , 1997, hep-ph/0111190.

[32]  Mártin Implications of supersymmetric models with natural R-parity conservation. , 1996, Physical review. D, Particles and fields.

[33]  Mcdonald,et al.  Gauge singlet scalars as cold dark matter. , 1994, Physical review. D, Particles and fields.

[34]  Mártin,et al.  Some simple criteria for gauged R parity. , 1992, Physical review. D, Particles and fields.

[35]  L. Ibáñez,et al.  Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model , 1992 .

[36]  M. Sher Electroweak Higgs Potentials and Vacuum Stability , 1989 .

[37]  F. Wilczek,et al.  Discrete gauge symmetry in continuum theories. , 1989, Physical review letters.

[38]  M. Fukugita,et al.  Baryogenesis without grand unification , 1986 .

[39]  T. Yanagida,et al.  Proton decay in a class of supersymmetric grand unified models , 1982 .

[40]  Graham G. Ross,et al.  SU(2)L × U(1) symmetry breaking as a radiative effect of supersymmetry breaking in GUTs , 1982 .

[41]  Savas Dimopoulos,et al.  Softly Broken Supersymmetry and SU(5) , 1981 .

[42]  G. Senjanovic,et al.  Neutrino Mass and Spontaneous Parity Nonconservation , 1980 .

[43]  F. Wilczek,et al.  Conservation or Violation of $B^-$l in Proton Decay , 1979 .

[44]  Ernest Ma,et al.  Pattern of Symmetry Breaking with Two Higgs Doublets , 1978 .

[45]  P. Fayet,et al.  Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry , 1978 .

[46]  P. Minkowski μ→eγ at a rate of one out of 109 muon decays? , 1977 .

[47]  H. Fritzsch,et al.  Unified Interactions of Leptons and Hadrons , 1975 .

[48]  G. J. Alner,et al.  University of Huddersfield Repository First on WIMP nuclear recoil signals in ZEPLIN-II: A two-phase xenon detector for dark matter detection , 2022 .