Load sensing and control of posture and locomotion.

[1]  J. Schmitz,et al.  Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. , 2004, Journal of neurophysiology.

[2]  S. Zill,et al.  Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches , 2004, Journal of Comparative Physiology A.

[3]  A. Büschges,et al.  Control of flexor motoneuron activity during single leg walking of the stick insect on an electronically controlled treadwheel. , 2003, Journal of neurobiology.

[4]  Volker Durr,et al.  Graded limb targeting in an insect is caused by the shift of a single movement pattern. , 2003, Journal of neurophysiology.

[5]  R. Hustert,et al.  Rapid mechano-sensory pathways code leg impact and elicit very rapid reflexes in insects , 2003, Journal of Experimental Biology.

[6]  J. T. Watson,et al.  Control of climbing behavior in the cockroach, Blaberus discoidalis. II. Motor activities associated with joint movement , 2002, Journal of Comparative Physiology A.

[7]  S. Zill,et al.  Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered , 2001, Journal of Comparative Physiology A.

[8]  Roger D. Quinn,et al.  Finite element analysis of strains in a Blaberus cockroach leg during climbing , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[9]  S. Zill,et al.  Dynamic responses of tibial campaniform sensilla studied by substrate displacement in freely moving cockroaches , 2001, Journal of Comparative Physiology A.

[10]  U. Bässler,et al.  The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. , 2001, Journal of neurophysiology.

[11]  C. Bartling,et al.  Reaction to disturbances of a walking leg during stance. , 2000, The Journal of experimental biology.

[12]  S. Zill,et al.  Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion , 2000, Journal of Comparative Physiology A.

[13]  J. Schmitz,et al.  Convergence of load and movement information onto leg motoneurons in insects. , 2000, Journal of neurobiology.

[14]  W J Kargo,et al.  Rapid Correction of Aimed Movements by Summation of Force-Field Primitives , 2000, The Journal of Neuroscience.

[15]  J. Schmitz,et al.  Multimodal convergence of presynaptic afferent inhibition in insect proprioceptors. , 1999, Journal of neurophysiology.

[16]  S. Zill,et al.  Active signaling of leg loading and unloading in the cockroach. , 1999, Journal of neurophysiology.

[17]  Jaynie F. Yang,et al.  Loading during the stance phase of walking in humans increases the extensor EMG amplitude but does not change the duration of the step cycle , 1999, Experimental Brain Research.

[18]  A. Büschges,et al.  Sensory pathways and their modulation in the control of locomotion , 1998, Current Opinion in Neurobiology.

[19]  U. Bässler,et al.  Pattern generation for stick insect walking movements—multisensory control of a locomotor program , 1998, Brain Research Reviews.

[20]  P. Carlson-Kuhta,et al.  Forms of forward quadrupedal locomotion. II. A comparison of posture, hindlimb kinematics, and motor patterns for upslope and level walking. , 1998, Journal of neurophysiology.

[21]  A. Büschges,et al.  Role of presynaptic inputs to proprioceptive afferents in tuning sensorimotor pathways of an insect joint control network. , 1997, Journal of neurobiology.

[22]  T J Roberts,et al.  Muscular Force in Running Turkeys: The Economy of Minimizing Work , 1997, Science.

[23]  M. Burrows The Neurobiology of an Insect Brain , 1996 .

[24]  J. Macpherson,et al.  Two functional muscle groupings during postural equilibrium tasks in standing cats. , 1996, Journal of neurophysiology.

[25]  Randall D. Beer,et al.  Biological Neural Networks in Invertebrate Neuroethology and Robotics. Editors: Randall D. Beer, Roy E. Ritzmann, Thomas McKenna (Academic Press, Inc., Harcourt Brace Jovanovich, 1993) , 1996, SGAR.

[26]  P. L. Newland,et al.  The central connections and actions during walking of tibial campaniform sensilla in the locust , 1996, Journal of Comparative Physiology A.

[27]  Kram Inexpensive load carrying by rhinoceros beetles , 1996, The Journal of experimental biology.

[28]  H. Pflüger,et al.  Motor patterns for horizontal and upside down walking and vertical climbing in the locust , 1995, The Journal of experimental biology.

[29]  C. Pratt Evidence of positive force feedback among hindlimb extensors in the intact standing cat. , 1995, Journal of neurophysiology.

[30]  W. J. P. Barnes,et al.  Morphology, physiology and in vivo activity of cuticular stress detector afferents in crayfish , 1995, Journal of Comparative Physiology A.

[31]  S. Zill,et al.  Effects of load inversion in cockroach walking , 1995, Journal of Comparative Physiology A.

[32]  J. Schmitz,et al.  Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine , 1995, The Journal of experimental biology.

[33]  Zollikofer STEPPING PATTERNS IN ANTS - INFLUENCE OF LOAD , 1994, The Journal of experimental biology.

[34]  A. S. French,et al.  Intracellular characterization of identified sensory cells in a new spider mechanoreceptor preparation. , 1994, Journal of neurophysiology.

[35]  J. Schmitz LOAD-COMPENSATING REACTIONS IN THE PROXIMAL LEG JOINTS OF STICK INSECTS DURING STANDING AND WALKING , 1993 .

[36]  G. Laurent,et al.  Synaptic potentials in the central terminals of locust proprioceptive afferents generated by other afferents from the same sense organ , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  S. Zill,et al.  Characteristics of dynamic postural reactions in the locust hindleg , 1992, Journal of Comparative Physiology A.

[38]  J. Dean Effect of load on leg movement and step coordination of the stick insect Carausius morosus , 1991 .

[39]  J. Schmitz,et al.  Nonspiking pathways antagonize the resistance reflex in the thoraco-coxal joint of stick insects. , 1991, Journal of neurobiology.

[40]  J. Dean,et al.  Central projections of leg sense organs inCarausius morosus (Insecta, Phasmida) , 1991, Zoomorphology.

[41]  F. Delcomyn Perturbation of the motor system in freely walking cockroaches. I. Rear leg amputation and the timing of motor activity in leg muscles. , 1991, The Journal of experimental biology.

[42]  S. Zill,et al.  Responses of locusts in a paradigm which tests postural load compensatory reactions , 1990, Brain Research.

[43]  T. Tang,et al.  THE EFFECTS OF SENSORY MANIPULATION UPON INTERLIMB COORDINATION DURING FAST WALKING IN THE COCKROACH , 1986 .

[44]  U. Bässler Afferent control of walking movements in the stick insectCuniculina impigra , 1986, Journal of Comparative Physiology A.

[45]  H. Cruse Which parameters control the leg movement of a walking insect? II: The start of the swing phase , 1985 .

[46]  U. Bässler,et al.  Motor Output of the Denervated Thoracic Ventral Nerve Cord in the Stick Insect Carausius Morosus , 1983 .

[47]  U. Bässler,et al.  Anatomy and physiology of trochanteral campaniform sensilla in the stick insect, Cuniculina impigra , 1982 .

[48]  S. Zill,et al.  The Exoskeleton and Insect Proprioception: III. Activity of Tribal Campaniform Sensilla During Walking in the American Cockroach, Periplaneta Americana , 1981 .

[49]  S. Zill,et al.  The Exoskeleton and Insect Proprioception: II. Reflex Effects of Tibial Campaniform Sensilla in the American Cockroach, Periplaneta Americana , 1981 .

[50]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[51]  S. Zill,et al.  THE EXOSKELETON AND INSECT PROPRIOCEPTION. I. RESPONSES OF TIBIAL CAMPANIFORM SENSILLA TO EXTERNAL AND MUSCLE-GENERATED FORCES IN THE AMERICAN COCKROACH, PERIPLANETA AMERICANA , 1981 .

[52]  G. Wendler,et al.  The reflex behaviour and innervation of the tergo-coxal retractor muscles of the stick insectCarausius morosus , 1981, Journal of comparative physiology.

[53]  P. Bräunig,et al.  Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts , 1981, Cell and Tissue Research.

[54]  K. M. Chapman,et al.  Proprioceptive indentation of the campaniform sensilla of cockroach legs , 1975, Journal of comparative physiology.

[55]  K. Pearson Central Programming and Reflex Control of Walking in the Cockroach , 1972 .

[56]  K. Pearson,et al.  Coxal depressor muscles of the cockroach and the role of peripheral inhibition. , 1971, The Journal of experimental biology.

[57]  D. M. Guthrie Multipolar stretch receptors and the insect leg reflex , 1967 .

[58]  F. Delcomyn Activity and directional sensitivity of leg campaniform sensilla in a stick insect , 2004, Journal of Comparative Physiology A.

[59]  Marion D. Kendall,et al.  The Anatomy of the Tarsi of Schistocerca gregaria Forskål , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[60]  D. Varjú,et al.  Regulation of the body-substrat-distance in the stick insect: Responses to sinusoidal stimulation , 2004, Biological Cybernetics.

[61]  U. Bässler,et al.  Sense organs in the femur of the stick insect and their relevance to the control of position of the femur-tibia-joint , 2004, Journal of comparative physiology.

[62]  J Schmidt,et al.  Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity. , 2001, Journal of neurophysiology.

[63]  J. Duysens,et al.  Load-regulating mechanisms in gait and posture: comparative aspects. , 2000, Physiological reviews.

[64]  Jan H. Cocatre-Zilgien,et al.  Modeling stress and strain in an insect leg for simulation of campaniform sensilla responses to external forces , 1999, Biological Cybernetics.

[65]  T. Matheson,et al.  An elaborate tension receptor system highlights sensory complexity in the hind leg of the locust , 1995, The Journal of experimental biology.

[66]  A. Petryszak,et al.  External proprioceptors on the legs of insect of higher orders , 1994 .

[67]  K. Pearson Common principles of motor control in vertebrates and invertebrates. , 1993, Annual review of neuroscience.

[68]  Marc D. Binder,et al.  The Segmental motor system , 1990 .

[69]  R. M. Alexander,et al.  Elastic mechanisms in animal movement , 1988 .

[70]  U. Bssler Afferent control of walking movements in the stick insectCuniculina impigra: II. Reflex reversal and the release of the swing phase in the restrained foreleg , 1986 .

[71]  D. Graham Pattern and Control of Walking in Insects , 1985 .

[72]  K. Krämer,et al.  Flight-inhibition on ground contact in the American cockroach, Periplaneta americana—I. Contact receptors and a model for their central connections , 1978 .

[73]  G. Wendler The co-ordination of walking movements in arthropods. , 1966, Symposia of the Society for Experimental Biology.

[74]  J. Pringle The Reflex Mechanism of the Insect Leg , 1940 .

[75]  J. Pringle Proprioception In Insects: II. The Action Of The Campaniform Sensilla On The Legs , 1938 .