Structure and Dynamics of the Sun’s Open Magnetic Field

The solar magnetic field is the primary agent that drives solar activity and couples the Sun to the heliosphere. Although the details of this coupling depend on the quantitative properties of the field, many important aspects of the corona-solar wind connection can be understood by considering only the general topological properties of those regions on the Sun where the field extends from the photosphere out to interplanetary space, the so-called open field regions that are usually observed as coronal holes. From the simple assumptions that underlie the standard quasi-steady corona-wind theoretical models, and that are likely to hold for the Sun as well, we derive two conjectures as to the possible structure and dynamics of coronal holes: (1) coronal holes are unique in that every unipolar region on the photosphere can contain at most one coronal hole, and (2) coronal holes of nested polarity regions must themselves be nested. Magnetic reconnection plays the central role in enforcing these constraints on the field topology. From these conjectures we derive additional properties for the topology of open field regions, and propose several observational predictions for both the slowly varying and transient corona/solar wind.

[1]  B. Low Coronal mass ejections, magnetic flux ropes, and solar magnetism , 2001 .

[2]  J. Wilcox,et al.  A model of interplanetary and coronal magnetic fields , 1969 .

[3]  M. Altschuler,et al.  Magnetic fields and the structure of the solar corona , 1969 .

[4]  J. F. Mckenzie,et al.  The origin of high speed solar wind streams , 1992 .

[5]  J. Hoeksema Large-scale solar and heliospheric magnetic fields , 1991 .

[6]  H. Warren,et al.  The Magnetic Topology of Coronal Mass Ejection Sources , 2007, astro-ph/0703049.

[7]  Elementary heating events - magnetic interactions between two flux sources , 2000 .

[8]  J. D. Bohlin,et al.  XUV observations of coronal magnetic fields , 1975 .

[9]  J. D. Bohlin,et al.  A preliminary study of the Extreme Ultraviolet spectroheliograms from Skylab , 1973 .

[10]  C. Russell Physics of magnetic flux ropes , 1989 .

[11]  E. Priest,et al.  Magnetic reconnection at three-dimensional null points , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  C. Schrijver,et al.  Photospheric and heliospheric magnetic fields , 2003 .

[13]  M. Velli,et al.  A Three-dimensional Model of the Solar Wind Incorporating Solar Magnetogram Observations , 2003 .

[14]  C. Schrijver,et al.  Sustaining the Quiet Photospheric Network: The Balance of Flux Emergence, Fragmentation, Merging, and Cancellation , 1997 .

[15]  Y.-M. Wang,et al.  Characteristics of Coronal Inflows , 2002 .

[16]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[17]  J. Sheeley Elemental Abundance Variations in the Solar Atmosphere , 1996 .

[18]  Russell A. Howard,et al.  Coronal mass ejections - 1979-1981 , 1985 .

[19]  E. Parker The X ray corona, the coronal hole, and the heliosphere , 1992 .

[20]  R. Muller Properties of Small Magnetic Elements , 1994 .

[21]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[22]  Thomas H. Zurbuchen,et al.  A New View of the Coupling of the Sun and the Heliosphere , 2007 .

[23]  Joseph B. Gurman,et al.  Observation of Quasi-periodic Compressive Waves in Solar Polar Plumes , 1998 .

[24]  G. Hornig,et al.  Theory of magnetic connectivity in the solar corona , 2002 .

[25]  A. A. van Ballegooijen,et al.  Electric currents in the solar corona and the existence of magnetostatic equilibrium , 1985 .

[26]  D. Stern A study of the electric field in an open magnetospheric model , 1973 .

[27]  S. Antiochos,et al.  A Model for Solar Coronal Mass Ejections , 1998, astro-ph/9807220.

[28]  J. Zirker Coronal holes and high‐speed wind streams , 1977 .

[29]  S. Antiochos The topology of force-free magnetic fields and its implications for coronal activity , 1987 .

[30]  J. Phillips,et al.  Observations of disconnection of open magnetic structures , 1991 .

[31]  E. Parker,et al.  Random walk of magnetic lines of force in astrophysics. , 1968 .

[32]  L. A. Ryder,et al.  Evidence for the Flare Trigger Site and Three-Dimensional Reconnection in Multiwavelength Observations of a Solar Flare , 2001 .

[33]  Leon Golub,et al.  The Topology and Evolution of the Bastille Day Flare , 2000 .

[34]  R. Lin,et al.  Interplanetary magnetic field connection to the sun during electron heat flux dropouts in the solar wind , 1992 .

[35]  Allen S. Krieger,et al.  The structure and evolution of coronal holes , 1975 .

[36]  S. Antiochos,et al.  Magnetic Free Energies of Breakout Coronal Mass Ejections , 2005 .

[37]  N. R. Sheeley,et al.  On potential field models of the solar corona , 1992 .

[38]  J. Phillips,et al.  Electron heat flux dropouts in the solar wind: evidence for interplanetary magnetic field reconnection? , 1989 .

[39]  T. Forbes A review on the genesis of coronal mass ejections , 2000 .

[40]  J. Finn,et al.  Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines , 1990 .

[41]  A. Hundhausen,et al.  Coronal mass ejections observed during the Solar Maximum Mission: Latitude distribution and rate of occurrence , 1984 .

[42]  S. Antiochos The magnetic topology of solar eruptions , 1998, astro-ph/9806030.

[43]  D. Odstrcil Modeling 3-D solar wind structure , 2003 .

[44]  S. Antiochos,et al.  On the formation of current sheets in the solar corona , 1990 .

[45]  N. Sheeley,et al.  Magnetic flux transport and the sunspot-cycle evolution of coronal holes and their wind streams , 1990 .

[46]  M. Aschwanden,et al.  Joint radio and soft x-ray imaging of an ‘anemone’ active region , 1996 .

[47]  E. Cliver,et al.  Coronal dimmings and energetic CMEs in April‐May 1998 , 2000 .

[48]  H. Hudson,et al.  A gigantic coronal jet ejected from a compact active region in a coronal hole , 1994 .

[49]  P. Gazis,et al.  Solar cycle changes in coronal holes and space weather cycles , 2002 .

[50]  E. N. Parker,et al.  Magnetic Neutral Sheets in Evolving Fields - Part Two - Formation of the Solar Corona , 1983 .

[51]  M. Velli,et al.  Solar Wind Ten , 2003 .

[52]  L. Fisk The Open Magnetic Flux of the Sun. I. Transport by Reconnections with Coronal Loops , 2005 .

[53]  J. Linker,et al.  Magnetohydrodynamic modeling of the solar corona during Whole Sun Month , 1999 .

[54]  Carolus J. Schrijver,et al.  Solar surface magnetism , 1994 .

[55]  J. Linker,et al.  The Latitudinal Excursion of Coronal Magnetic Field Lines in Response to Differential Rotation: MHD Simulations , 2006 .

[56]  Scott H. Hawley,et al.  The Magnetic Nature of Coronal Holes , 1996, Science.

[57]  H. Hudson,et al.  Boundary Structures and Changes in Long-lived Coronal Holes , 2002 .

[58]  J. M. Greene Geometrical properties of three‐dimensional reconnecting magnetic fields with nulls , 1988 .

[59]  N. Schwadron,et al.  On the Coronal Magnetic Field: Consequences of Large-Scale Motions , 1999 .

[60]  J. Gosling,et al.  Reducing heliospheric magnetic flux from coronal mass ejections without disconnection , 2002 .

[61]  W. Soon,et al.  Theories of solar eruptions: a review , 2003 .

[62]  C. Schrijver,et al.  Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME , 2003 .

[63]  J. Luhmann,et al.  Coronal Magnetic Field Context of Simple CMEs Inferred from Global Potential Field Models , 2003 .

[64]  Mark S. Giampapa,et al.  Cosmic Winds and the Heliosphere , 1997 .

[65]  T. Zurbuchen,et al.  Distribution and properties of open magnetic flux outside of coronal holes , 2006 .

[66]  J. Linker,et al.  An empirically‐driven global MHD model of the solar corona and inner heliosphere , 2001 .

[67]  D. Larson,et al.  Assessing electron heat flux dropouts as signatures of magnetic field line disconnection from the Sun , 2005 .

[68]  S. Syrovatskii Pinch Sheets and Reconnection in Astrophysics , 1981 .