A speciation-based model for mixed-solvent electrolyte systems

A comprehensive model has been developed for the calculation of speciation, phase equilibria, enthalpies, heat capacities and densities in mixed-solvent electrolyte systems. The model incorporates chemical equilibria to account for chemical speciation in multiphase, multicomponent systems. For this purpose, the model combines standard-state thermochemical properties of solution species with an expression for the excess Gibbs energy. The excess Gibbs energy model incorporates a long-range electrostatic interaction term expressed by a Pitzer–Debye–Huckel equation, a short-range interaction term expressed by the UNIQUAC model and a middle-range, second virial coefficient-type term for the remaining ionic interactions. The standard-state properties are calculated by using the Helgeson– Kirkham–Flowers equation of state for species at infinite dilution in water and by constraining the model to reproduce the Gibbs energy of transfer between various solvents. The model is capable of accurately reproducing various types of experimental data for systems including aqueous electrolyte solutions ranging from infinite dilution to fused salts, electrolytes in organic or mixed, water + organic, solvents up to the solubility limit and acid–water mixtures in the full concentration range. © 2002 Elsevier Science B.V. All rights reserved.

[1]  Herbert I. Britt,et al.  Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems , 1982 .

[2]  J. Simons,et al.  THE DENSITY AND SURFACE TENSION OF LIQUID HYDROGEN FLUORIDE , 1932 .

[3]  M. A. Esteso,et al.  Activity coefficients for NaCl in ethanol-water mixtures at 25°C , 1989 .

[4]  J. Pablo,et al.  Thermodynamic Modeling of the Solubility of Salts in Mixed Aqueous−Organic Solvents , 1996 .

[5]  Jürgen Gmehling,et al.  Prediction of vapor-liquid equilibria in mixed-solvent electrolyte systems using the group contribution concept , 1999 .

[6]  G. C. Hood,et al.  Ionization of Strong Electrolytes. V. Proton Magnetic Resonance in Sulfuric Acid , 1957 .

[7]  D. G. Archer,et al.  Thermodynamic Properties of the NaCl+H2O System. II. Thermodynamic Properties of NaCl(aq), NaCl⋅2H2(cr), and Phase Equilibria , 1992 .

[8]  J. Hollenberg Infrared Spectrum of HF(g) Trimer and Dimer , 1967 .

[9]  W. Giauque,et al.  The Thermodynamic Properties of Aqueous Sulfuric Acid Solutions and Hydrates from 15 to 300°K.1 , 1960 .

[10]  C. H. Greenewalt Partial Pressure of Water Out of Aqueous Solutions of Sulfuric Acid. , 1925 .

[11]  Eugénia A. Macedo,et al.  Calculation of phase equilibria for solutions of strong electrolytes in solvent-water mixtures , 1990 .

[12]  A. Robinson,et al.  The Heats of Dilution of Aqueous Solutions of Zinc, Cadmium and Copper Sulfates and Sulfuric Acid at 25° , 1933 .

[13]  William F. Furter,et al.  Thermodynamic Behavior of Electrolytes in Mixed Solvents II , 1976 .

[14]  T. Vermeulen,et al.  VAPOR-LIQUID EQUILIBRIA FOR AQUEOUS SULFURIC ACID , 1964 .

[15]  O. Popovych,et al.  Standard potentials of potassium electrodes and activity coefficients and medium effects of potassium chloride in ethanol-water solvents , 1968 .

[16]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures , 1974 .

[17]  Lawrence B. Evans,et al.  Thermodynamic representation of phase equilibria of mixed‐solvent electrolyte systems , 1986 .

[18]  J. Gmehling Vapor-Liquid Equilibrium Data Collection , 1977 .

[19]  E. Segnit,et al.  The solubility of calcite in aqueous solutions—I The solubility of calcite in water between 75° and 200° at CO2 pressures up to 60 atm , 1962 .

[20]  J. Prausnitz,et al.  Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems , 1975 .

[21]  H. Holland,et al.  The solubility of fluorite in hydrothermal solutions, an experimental study , 1979 .

[22]  H. Gibbard,et al.  Liquid-vapor equilibrium of aqueous lithium chloride, from 25 to 100.deg. and from 1.0 to 18.5 molal, and related properties , 1973 .

[23]  J. A. Rard,et al.  Thermodynamic properties of 0–6 mol kg–1 aqueous sulfuric acid from 273.15 to 328.15 K , 1994 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  J. Gaube J. Gmehling, U. Onken: Vapor‐Liquid Equilibrium Data Collection, Aqueous‐Organic Systems, in der Reihe: Chemistry Data Series, Vol. I, Part. 1. DECHEMA, Frankfurt 1977. 698 Seiten, Preis: DM 120,‐ , 1978 .

[26]  R. Danner,et al.  Physical And Thermodynamic Properties Of Pure Chemicals , 1991 .

[27]  L. Hepler,et al.  The enthalpies of dilution of aqueous organic acids: oxalic acid and citric acid at 298.15 K , 1990 .

[28]  W. Acree Thermodynamic properties of nonelectrolyte solutions , 1984 .

[29]  E. R. Malinowski,et al.  Factor analysis for isolation of the Raman spectra of aqueous sulfuric acid components , 1984 .

[30]  J. Sandström,et al.  Nucleophilic Reactivity of Alkoxide Ions Towards 2,4-Dinitrofluorobenzene and the Acidity of Alcohols. , 1964 .

[31]  P. Mussini,et al.  Thermodynamics of NaCl in Aqueous Ethylene Glycol, Acetonitrile, and 1,4-Dioxane Mixtures from Emf Measurements at 25°C , 1997 .

[32]  T. E. Daubert,et al.  Physical and thermodynamic properties of pure chemicals : data compilation , 1989 .

[33]  Maurizio Fermeglia,et al.  Unifac prediction of vapor-liquid equilibria in mixed solvent-salt systems , 1991 .

[34]  J. Zuo,et al.  Predicting LLE in mixed‐solvent electrolyte systems by an electrolyte EOS , 2000 .

[35]  J. E. Coon,et al.  An equation of state for hydrogen fluoride , 1993 .

[36]  The Vapor Phase above the System Sulfuric Acid–Water. , 1946 .

[37]  Jürgen Gmehling,et al.  A gE model for single and mixed solvent electrolyte systems: 1. Model and results for strong electrolytes , 1994 .

[38]  R. Dresdner Fluorine Chemistry , 1963, Nature.

[39]  J. Hildebrand,et al.  The Polymerization of Gaseous Hydrogen and Deuterium Fluorides , 1943 .

[40]  D. Bradley,et al.  Excess molar enthalpies and the thermodynamics of (methanol + water) to 573 K and 40 MPa , 1987 .

[41]  Ivan Dmitrievich Zaĭt︠s︡ev,et al.  Properties of Aqueous Solutions of Electrolytes , 1992 .

[42]  A. J. Ellis The solubility of calcite in sodium chloride solutions at high temperatures , 1963 .

[43]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[44]  Jerry Braunstein,et al.  Vapor pressures o aqueous melts. Lithium nitrate-potassium nitrate-water at 119-150.deg. , 1969 .

[45]  S. C. K. and,et al.  Enthalpies of Dilution and Excess Molar Enthalpies of an Aqueous Solution of Sulfuric Acid , 2001 .

[46]  J. S. Rowlinson,et al.  Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .

[47]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species , 1990 .

[48]  Everett L. Shock,et al.  Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb , 1997 .

[49]  Andrzej Anderko,et al.  Computation of dielectric constants of solvent mixtures and electrolyte solutions , 2001 .

[50]  P. Brimblecombe,et al.  Application of a Multicomponent Thermodynamic Model to Activities and Thermal Properties of 0-40 mol kg-1 Aqueous Sulfuric Acid from <200 to 328 K , 1995 .

[51]  G. Walrafen,et al.  Structures of Concentrated Sulfuric Acid Determined from Density, Conductivity, Viscosity, and Raman Spectroscopic Data , 2000 .

[52]  Richard W. Hanks,et al.  Handbook of heats of mixing , 1982 .

[53]  A. Seidell Solubilities of inorganic and metal organic compounds : a compilation of quantitative solubility data from the periodical literature , 2015 .

[54]  D. Garvin,et al.  CODATA thermodynamic tables , 1987 .

[55]  A. Anderko,et al.  Modeling phase equilibria in mixtures containing hydrogen fluoride and halocarbons , 1993 .

[56]  I︠a︡. I︠u︡. Akhadov Dielectric properties of binary solutions , 1981 .

[57]  P. Rütten,et al.  Measurements of the heats of dilution and description of the system H2O/H2SO4/HCl with a solvation model , 1998 .

[58]  D. Visco,et al.  Improved Thermodynamic Equation of State for Hydrogen Fluoride , 1999 .

[59]  David Garvin,et al.  CODATA thermodynamic tables : selections for some compounds of calcium and related mixtures : a prototype set of tables , 1987 .

[60]  C. Wormald,et al.  Excess enthalpies for (water + methanol) atT= 423 K toT= 523 and pressures up to 20 MPa. A new flow mixing calorimeter , 1996 .

[61]  H. G. Hertz,et al.  Ion Properties , 1999 .

[62]  J. M. Beckerdite,et al.  Self-association of gases. 2. The association of hydrogen fluoride , 1983 .

[63]  P. Ulbig,et al.  Effect of NaCl or KCl on the Excess Enthalpies of Alkanol + Water Mixtures at Various Temperatures and Salt Concentrations , 1999 .

[64]  E. Macedo,et al.  Representation of salt solubility in mixed solvents: a comparison of thermodynamic models , 1996 .

[65]  H. Stephen,et al.  Solubilities of inorganic and organic compounds , 1963 .

[66]  M. Iliuta,et al.  Extended UNIQUAC model for correlation and prediction of vapour–liquid–solid equilibria in aqueous salt systems containing non-electrolytes. Part A. Methanol–water–salt systems , 2000 .

[67]  A. J. Easteal,et al.  (p, Vm, T, x) measurements for [(1 − x)H2O+xCH3OH] in the range 278 to 323 K and 0.1 to 280 MPa I. Experimental results, isothermal compressibilities, thermal expansivities, and partial molar volumes , 1985 .

[68]  Otakar Sohnel,et al.  Densities of aqueous solutions of inorganic substances , 1985 .

[69]  D. Smith Hydrogen Fluoride Polymer Spectrum, Hexamer and Tetramer , 1958 .

[70]  Lawrence B. Evans,et al.  A local composition model for the excess Gibbs energy of aqueous electrolyte systems , 1986 .

[71]  John Howard Perry,et al.  Chemical Engineers' Handbook , 1934 .

[72]  Thermodynamics of the hydrogen-silver chloride cell in ethanol-water mixtures from −10 to +40°C , 1988 .

[73]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C , 1988 .

[74]  J. Kao Vapor-liquid equilibrium of water-hydrogen chloride system , 1970 .

[75]  C. Dussap,et al.  Prediction of pH in complex aqueous mixtures using a group‐contribution method , 1994 .

[76]  G. A. Sweany,et al.  An equation of state/chemical association model for fluorinated hydrocarbons and HF , 1995 .

[77]  A. Bondi,et al.  Physical properties of molecular crystals liquids, and glasses , 1968 .

[78]  J. O’Connell,et al.  Activity coefficients in mixed solvent electrolyte solutions , 1987 .

[79]  M. Shimizu [Electrolyte solutions]. , 2019, [Kango] Japanese journal of nursing.

[80]  C. V. King,et al.  The Structure of Electrolytic Solutions , 1959 .

[81]  E. Miller Vapor-liquid equilibriums of water-hydrogen chloride solutions below 0.degree.C , 1983 .

[82]  Aage Fredenslund,et al.  Calculation of vapour-liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation , 1986 .

[83]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; I, Summary of the thermodynamic/electrostatic properties of the solvent , 1974 .

[84]  C. Dussap,et al.  Representation of vapour -liquid equilibria in water-alcohol-electrolyte mixtures with a modified UNIFAC group-contribution method , 1994 .

[85]  J. Prausnitz,et al.  Thermodynamics of phase equilibria in aqueous-organic systems with salt , 1994 .

[86]  Peter Brimblecombe,et al.  Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes , 1992 .

[87]  J. Elliott,et al.  Thermodynamic activities and equilibrium partial pressures for aqueous sulfuric acid solutions. , 1990 .

[88]  Kenneth S. Pitzer,et al.  Thermodynamics of multicomponent, miscible, ionic systems: theory and equations , 1986 .

[89]  J. Prausnitz,et al.  On the Relationship Between the Equilibrium Constants of Consecutive Association Reactions , 1994 .

[90]  S. Watanasiri,et al.  Representation of liquid-liquid equilibrium of mixed-solvent electrolyte systems using the extended electrolyte NRTL model , 1996 .

[91]  T. Ishikawa,et al.  Bubble points of hydrogen chloride–water–isopropanol and hydrogen chloride–water–isopropanol–benzene systems and liquid–liquid equilibria of hydrogen chloride–water–benzene and hydrogen chloride–water–isopropanol–benzene systems , 2001 .

[92]  Young Tf,et al.  The variations of the properties of electrolytic solutions with degrees of dissociation. , 1949 .

[93]  J. Sangster,et al.  Vapour pressures of aqueous solutions of AgNO3 + TlNO3 by the static method at 98.5 °C , 1977 .

[94]  T. Ohmi,et al.  Conductivity and Dissociation Equilibrium of Extremely Anhydrous Hydrogen Fluoride , 1990 .

[95]  K. Pitzer,et al.  Thermodynamics of multicomponent, miscible ionic systems: the system lithium nitrate-potassium nitrate-water , 1986 .

[96]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. I. Theoretical basis and general equations , 1973 .

[97]  Robert H. Wood,et al.  Enthalpy of dilution of aqueous sodium chloride at 348.15 to 472.95 K measured with a flow calorimeter , 1975 .

[98]  E. Groves A Dissertation ON , 1928 .

[99]  H. Helgeson,et al.  Theoretical prediction of thermodynamic properties of aqueous electrolytes at high pressures and temperatures. III. Equation of state for aqueous species at infinite dilution , 1976 .