Planar Holographic Metasurfaces for Terahertz Focusing

Scientists and laymen alike have always been fascinated by the ability of lenses and mirrors to control light. Now, with the advent of metamaterials and their two-dimensional counterpart metasurfaces, such components can be miniaturized and designed with additional functionalities, holding promise for system integration. To demonstrate this potential, here ultrathin reflection metasurfaces (also called metamirrors) designed for focusing terahertz radiation into a single spot and four spaced spots are proposed and experimentally investigated at the frequency of 0.35 THz. Each metasurface is designed using a computer-generated spatial distribution of the reflection phase. The phase variation within 360 deg is achieved via a topological morphing of the metasurface pattern from metallic patches to U-shaped and split-ring resonator elements, whose spectral response is derived from full-wave electromagnetic simulations. The proposed approach demonstrates a high-performance solution for creating low-cost and lightweight beam-shaping and beam-focusing devices for the terahertz band.

[1]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[2]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[3]  M. Gearing,et al.  Correction: Corrigendum: Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s disease model , 2014, Nature Communications.

[4]  A. V. Gelfand,et al.  Regular and anomalous extraordinary optical transmission at the THz-gap. , 2009, Optics express.

[5]  Yun-Shik Lee,et al.  Principles of Terahertz Science and Technology , 2008 .

[6]  Victor A. Soifer,et al.  Iteractive Methods For Diffractive Optical Elements Computation , 1997 .

[7]  Mario Sorolla,et al.  Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications , 2013 .

[8]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[9]  A. V. Gelfand,et al.  Polypropylene-substrate-based SRR- and CSRR- metasurfaces for submillimeter waves. , 2008, Optics express.

[10]  J. Encinar,et al.  Reflectarray antennas , 2007, Developments in Antenna Analysis and Design: Volume 2.

[11]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[12]  M. Freire,et al.  Resonance and Cross-Polarization Effects in Conventional and Complementary Split Ring Resonator Periodic Screens , 2006 .

[13]  M. A. O. Ignacio,et al.  How to cite this article , 2016 .

[14]  Martin Wegener,et al.  Broadband terahertz generation from metamaterials. , 2014, Nature communications.

[15]  Victor A. Soifer,et al.  Methods for Computer Design of Diffractive Optical Elements , 2001 .

[16]  Ieee Microwave Theory,et al.  Quasioptical systems : Gaussian beam quasioptical propagation and applications , 1998 .

[17]  D. Grischkowsky,et al.  Broadband THz Pulse Transmission Through the Atmosphere , 2011, IEEE Transactions on Terahertz Science and Technology.

[18]  A. Volkov,et al.  Coherent source submillimeter wave spectroscopy , 1998 .

[19]  Wen-feng Sun,et al.  Ultrathin Terahertz Planar Elements , 2012, 1206.7011.

[20]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[21]  G. Grüner Millimeter and Submillimeter Wave Spectroscopy of Solids , 1998 .

[22]  Christophe Caloz,et al.  Manipulating light at distance by a metasurface using momentum transformation. , 2013, Optics express.

[23]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[24]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[25]  Constantine A. Balanis,et al.  Modern Antenna Handbook , 2012 .

[26]  Diffractive elements for a free electron laser , 2010 .

[27]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[28]  K. N. Tukmakov,et al.  Silicon diffractive optical elements for high-power monochromatic terahertz radiation , 2013 .

[29]  M. Navarro-Cía,et al.  Route for Bulk Millimeter Wave and Terahertz Metamaterial Design , 2011, IEEE Journal of Quantum Electronics.

[30]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[31]  N. Vinokurov,et al.  Diffractive optical elements and quasioptical schemes for experiments on a high-power terahertz free-electron laser , 2007 .

[32]  Xiang Wan,et al.  A broadband transformation-optics metasurface lens , 2014 .

[33]  David M. Pozar,et al.  Wideband reflectarrays using artificial impedance surfaces , 2007 .

[34]  Baowen Li,et al.  Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection , 2013, Scientific Reports.