List decoding of Reed-Solomon codes from a Gröbner basis perspective

The interpolation step of Guruswami and Sudan's list decoding of Reed-Solomon codes poses the problem of finding the minimal polynomial of an ideal with respect to a certain monomial order. An efficient algorithm that solves the problem is presented based on the theory of Grobner bases of modules. In a special case, this algorithm reduces to a simple Berlekamp-Massey-like decoding algorithm.

[1]  M. Alekhnovich Linear Diophantine equations over polynomials and soft decoding of Reed-Solomon codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[2]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[3]  Patrick Fitzpatrick On the key equation , 1995, IEEE Trans. Inf. Theory.

[4]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[5]  David Joyner,et al.  Coding Theory and Cryptography: From Enigma and Geheimschreiber to Quantum Theory , 1999 .

[6]  Daniel Augot,et al.  A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes , 2000, IEEE Trans. Inf. Theory.

[7]  M. Amin Shokrollahi,et al.  A displacement approach to decoding algebraic codes , 2001 .

[8]  Johannes Buchmann,et al.  Coding Theory, Cryptography and Related Areas , 2000, Springer Berlin Heidelberg.

[9]  Shuhong Gao,et al.  GRÖBNER BASES , PADÉ APPROXIMATION , AND DECODING OF LINEAR CODES , 2005 .

[10]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[11]  Venkatesan Guruswami,et al.  List decoding of error correcting codes , 2001 .

[12]  Maria Grazia Marinari,et al.  Gröbner bases of ideals defined by functionals with an application to ideals of projective points , 1993, Applicable Algebra in Engineering, Communication and Computing.

[13]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[14]  Tom Høholdt,et al.  Decoding Reed-Solomon Codes Beyond Half the Minimum Distance , 2000 .

[15]  R. McEliece The Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes , 2003 .

[16]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[17]  Margreta Kuijper,et al.  Reed-Solomon list decoding from a system-theoretic perspective , 2004, IEEE Transactions on Information Theory.

[18]  Ron M. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 2000, IEEE Trans. Inf. Theory.

[19]  Shuhong Gao,et al.  Computing Roots of Polynomials over Function Fields of Curves , 1999 .

[20]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[21]  H. O'Keeffe,et al.  Gröbner basis solutions of constrained interpolation problems , 2002 .

[22]  Kwankyu Lee,et al.  An Interpolation Algorithm using Gröbner Bases for Soft-Decision Decoding of Reed-Solomon Codes , 2006, 2006 IEEE International Symposium on Information Theory.