The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory

The mergers of supermassive black hole binaries (SMBHBs) promise to be incredible sources of gravitational waves (GWs). While the oscillatory part of the merger gravitational waveform will be outside the frequency sensitivity range of pulsar timing arrays, the nonoscillatory GW memory effect is detectable. Further, any burst of GWs will produce GW memory, making memory a useful probe of unmodeled exotic sources and new physics. We searched the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 11 yr data set for GW memory. This data set is sensitive to very low-frequency GWs of ∼3 to 400 nHz (periods of ∼11 yr–1 month). Finding no evidence for GWs, we placed limits on the strain amplitude of GW memory events during the observation period. We then used the strain upper limits to place limits on the rate of GW memory causing events. At a strain of 2.5 × 10−14, corresponding to the median upper limit as a function of source sky position, we set a limit on the rate of GW memory events at <0.4 yr−1. That strain corresponds to an SMBHB merger with reduced mass of ηM ∼ 2 × 1010 and inclination of ι = π/3 at a distance of 1 Gpc. As a test of our analysis, we analyzed the NANOGrav 9 yr data set as well. This analysis found an anomolous signal, which does not appear in the 11 yr data set. This signal is not a GW, and its origin remains unknown.

[1]  D. Stinebring,et al.  The NANOGrav 11 yr Data Set: Evolution of Gravitational-wave Background Statistics , 2019, The Astrophysical Journal.

[2]  G. Desvignes,et al.  The International Pulsar Timing Array: second data release , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  X. Siemens,et al.  Prospects for Memory Detection with Low-Frequency Gravitational Wave Detectors , 2019, 1906.11936.

[4]  Leo Singer,et al.  healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python , 2019, J. Open Source Softw..

[5]  D. Stinebring,et al.  The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries , 2018, The Astrophysical Journal.

[6]  D. Spergel,et al.  Improving Distances to Binary Millisecond Pulsars with Gaia , 2018, The Astrophysical Journal.

[7]  P. Lasky,et al.  Gravitational-wave memory: Waveforms and phenomenology , 2018, Physical Review D.

[8]  D. Kaplan,et al.  Binary Pulsar Distances and Velocities from Gaia Data Release 2 , 2018, The Astrophysical Journal.

[9]  P. S. Ray,et al.  The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background , 2018, 1801.02617.

[10]  Stephen R. Taylor,et al.  The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.

[11]  J. Cordes,et al.  Pulsar timing perturbations from Galactic gravitational wave bursts with memory , 2017, 1710.04974.

[12]  P. Lasky,et al.  Detecting Gravitational Wave Memory without Parent Signals. , 2017, Physical review letters.

[13]  X. Siemens,et al.  THE NANOGRAV NINE-YEAR DATA SET: EXCESS NOISE IN MILLISECOND PULSAR ARRIVAL TIMES , 2016, 1610.01731.

[14]  G. Desvignes,et al.  A glitch in the millisecond pulsar J0613-0200 , 2016, 1606.04098.

[15]  P. Lasky,et al.  Detecting Gravitational-Wave Memory with LIGO: Implications of GW150914. , 2016, Physical review letters.

[16]  P. Lasky,et al.  Versatile Directional Searches for Gravitational Waves with Pulsar Timing Arrays , 2015, 1510.08068.

[17]  R. Manchester,et al.  A study of spatial correlations in pulsar timing array data , 2015, 1510.02363.

[18]  X. Siemens,et al.  THE NANOGRAV NINE-YEAR DATA SET: NOISE BUDGET FOR PULSAR ARRIVAL TIMES ON INTRADAY TIMESCALES , 2015, 1512.08326.

[19]  A. Lommen Pulsar timing arrays: the promise of gravitational wave detection , 2015, Reports on progress in physics. Physical Society.

[20]  Z. Arzoumanian,et al.  THE NANOGRAV NINE-YEAR DATA SET: ASTROMETRIC MEASUREMENTS OF 37 MILLISECOND PULSARS , 2015, 1509.08982.

[21]  Yan Wang,et al.  THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND , 2015, 1508.03024.

[22]  D. Stinebring,et al.  THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.

[23]  D. Stinebring,et al.  NANOGrav CONSTRAINTS ON GRAVITATIONAL WAVE BURSTS WITH MEMORY , 2015, 1501.05343.

[24]  Y. Levin,et al.  Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array , 2014, 1410.3323.

[25]  M. Vallisneri,et al.  Low-rank approximations for large stationary covariance matrices, as used in the Bayesian and generalized-least-squares analysis of pulsar-timing data , 2014, 1407.6710.

[26]  The Ligo Scientific Collaboration Advanced LIGO , 2014, 1411.4547.

[27]  L. Finn,et al.  OPTIMIZATION OF NANOGRAV'S TIME ALLOCATION FOR MAXIMUM SENSITIVITY TO SINGLE SOURCES , 2014, 1409.7722.

[28]  J. Gair,et al.  Accelerated Bayesian model-selection and parameter-estimation in continuous gravitational-wave searches with pulsar-timing arrays , 2014, 1406.5224.

[29]  J. Cordes,et al.  ASSESSING PULSAR TIMING ARRAY SENSITIVITY TO GRAVITATIONAL WAVE BURSTS WITH MEMORY , 2014, 1404.5682.

[30]  A. Sesana,et al.  LINKING THE SPIN EVOLUTION OF MASSIVE BLACK HOLES TO GALAXY KINEMATICS , 2014, 1402.7088.

[31]  S. Burke-Spolaor,et al.  The gravitational-wave discovery space of pulsar timing arrays , 2013, 1309.2581.

[32]  J. Ellis A Bayesian analysis pipeline for continuous GW sources in the PTA band , 2013, 1305.0835.

[33]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[34]  M. Hobson,et al.  Hyper-efficient model-independent Bayesian method for the analysis of pulsar timing data , 2012, 1210.3578.

[35]  J. Cordes,et al.  DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING , 2012 .

[36]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[37]  M. Pitkin Extending gravitational wave burst searches with pulsar timing arrays , 2012, 1201.3573.

[38]  D. Stinebring,et al.  Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.

[39]  Marc Favata The gravitational-wave memory from eccentric binaries , 2011, 1108.3121.

[40]  L. Finn,et al.  OPTIMIZING PULSAR TIMING ARRAYS TO MAXIMIZE GRAVITATIONAL WAVE SINGLE-SOURCE DETECTION: A FIRST CUT , 2010, 1005.5163.

[41]  J. Cordes,et al.  A Measurement Model for Precision Pulsar Timing , 2010, 1010.3785.

[42]  N. Cornish,et al.  PULSAR TIMING ARRAY OBSERVATIONS OF MASSIVE BLACK HOLE BINARIES , 2010, 1008.1782.

[43]  M. Pshirkov,et al.  Local constraints on cosmic string loops from photometry and pulsar timing , 2009, 0911.4955.

[44]  Y. Levin,et al.  Gravitational-Wave Memory and Pulsar Timing Arrays , 2009, 0909.0954.

[45]  N. Seto Search for memory and inspiral gravitational waves from supermassive binary black holes with pulsar timing arrays , 2009, 0909.1379.

[46]  K. Postnov,et al.  Observing gravitational wave bursts in pulsar timing measurements , 2009, 0909.0742.

[47]  A. Deller,et al.  PRECISION SOUTHERN HEMISPHERE VLBI PULSAR ASTROMETRY. II. MEASUREMENT OF SEVEN PARALLAXES , 2009, 0906.3897.

[48]  G. Hobbs The Parkes Pulsar Timing Array , 2009, 1307.2629.

[49]  Y. Zlochower,et al.  Remnant masses, spins and recoils from the merger of generic black hole binaries , 2009, 0904.3541.

[50]  Marc Favata NONLINEAR GRAVITATIONAL-WAVE MEMORY FROM BINARY BLACK HOLE MERGERS , 2009, 0902.3660.

[51]  Marc Favata,et al.  Post-Newtonian corrections to the gravitational-wave memory for quasicircular, inspiralling compact binaries , 2008, 0812.0069.

[52]  A. Vecchio,et al.  Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays , 2008, 0809.3412.

[53]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[54]  D. Lorimer Binary and Millisecond Pulsars , 1998, Living reviews in relativity.

[55]  R. Manchester,et al.  tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.

[56]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[57]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[58]  B. Iyer,et al.  The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits , 2004, gr-qc/0404085.

[59]  I. Cognard,et al.  A Microglitch in the Millisecond Pulsar PSR B1821–24 in M28 , 2004 .

[60]  I. C. D. C. B. C. O. France,et al.  A Micro-glitch in the Millisecond Pulsar B1821-24 in M28 , 2004, astro-ph/0407546.

[61]  A. Jaffe,et al.  Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries , 2002, astro-ph/0210148.

[62]  T. Damour,et al.  Gravitational wave bursts from cusps and kinks on cosmic strings , 2001, gr-qc/0104026.

[63]  A. Burrows,et al.  Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion. , 1995, Physical review letters.

[64]  M. Haehnelt Low-frequency gravitational waves from supermassive black holes , 1994, astro-ph/9405032.

[65]  Blanchet,et al.  Hereditary effects in gravitational radiation. , 1992, Physical review. D, Particles and fields.

[66]  Thorne,et al.  Gravitational-wave bursts with memory: The Christodoulou effect. , 1992, Physical review. D, Particles and fields.

[67]  Wiseman,et al.  Christodoulou's nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation. , 1991, Physical review. D, Particles and fields.

[68]  Christodoulou,et al.  Nonlinear nature of gravitation and gravitational-wave experiments. , 1991, Physical review letters.

[69]  D. Backer,et al.  Constructing a Pulsar Timing Array , 1990 .

[70]  K. Thorne,et al.  Gravitational-wave bursts with memory and experimental prospects , 1987, Nature.

[71]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .

[72]  C. Will,et al.  Post-Newtonian gravitational bremsstrahlung , 1978 .

[73]  Hugo D. Wahlquist,et al.  Response of Doppler spacecraft tracking to gravitational radiation , 1975 .

[74]  J. Dickey The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters , 1971 .

[75]  K. Malmquist On some relations in stellar statistics , 1922 .

[76]  C. V. L. Charlier,et al.  Meddelanden Fran Lunds Astronomiska Observatorium. Serie II, Nr. 4. Researches into the Theory of Probability. , 1906 .