The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory
暂无分享,去创建一个
D. Stinebring | J. Key | J. Luo | S. McWilliams | X. Siemens | E. Huerta | P. Baker | N. Cornish | A. M. Holgado | R. Lynch | D. Kaplan | S. Burke-Spolaor | J. Cordes | L. Kelley | Z. Arzoumanian | M. Mclaughlin | J. Swiggum | D. Lorimer | S. Ransom | A. Brazier | D. Nice | J. Ellis | S. Chatterjee | F. Crawford | I. Stairs | K. Stovall | W. Zhu | T. Lazio | P. Demorest | M. Vallisneri | S. R. Taylor | M. Lam | E. Ferrara | C. Mingarelli | P. Ray | T. Pennucci | P. Brook | L. Levin | C. Ng | R. Ferdman | R. Spiewak | M. DeCesar | E. Fonseca | D. Good | K. Aggarwal | M. Jones | D. Madison | N. Pol | T. Dolch | N. Garver-Daniels | P. Gentile | G. Jones | J. Simon | K. Crowter | S. Vigeland | K. Islo | H. Cromartie | J. Hazboun | R. Jennings | C. A. Witt | R. van Haasteren | J. Cordes | C. Witt | R. V. Haasteren | Wenbai Zhu | L. Levin | G. Jones | L. Levin | E. Fonseca | J. Simon | S. Taylor | D. Lorimer | R. Lynch | David L. Kaplan | M. McLaughlin | P. T. Baker | S. Chatterjee
[1] D. Stinebring,et al. The NANOGrav 11 yr Data Set: Evolution of Gravitational-wave Background Statistics , 2019, The Astrophysical Journal.
[2] G. Desvignes,et al. The International Pulsar Timing Array: second data release , 2019, Monthly Notices of the Royal Astronomical Society.
[3] X. Siemens,et al. Prospects for Memory Detection with Low-Frequency Gravitational Wave Detectors , 2019, 1906.11936.
[4] Leo Singer,et al. healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python , 2019, J. Open Source Softw..
[5] D. Stinebring,et al. The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries , 2018, The Astrophysical Journal.
[6] D. Spergel,et al. Improving Distances to Binary Millisecond Pulsars with Gaia , 2018, The Astrophysical Journal.
[7] P. Lasky,et al. Gravitational-wave memory: Waveforms and phenomenology , 2018, Physical Review D.
[8] D. Kaplan,et al. Binary Pulsar Distances and Velocities from Gaia Data Release 2 , 2018, The Astrophysical Journal.
[9] P. S. Ray,et al. The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background , 2018, 1801.02617.
[10] Stephen R. Taylor,et al. The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.
[11] J. Cordes,et al. Pulsar timing perturbations from Galactic gravitational wave bursts with memory , 2017, 1710.04974.
[12] P. Lasky,et al. Detecting Gravitational Wave Memory without Parent Signals. , 2017, Physical review letters.
[13] X. Siemens,et al. THE NANOGRAV NINE-YEAR DATA SET: EXCESS NOISE IN MILLISECOND PULSAR ARRIVAL TIMES , 2016, 1610.01731.
[14] G. Desvignes,et al. A glitch in the millisecond pulsar J0613-0200 , 2016, 1606.04098.
[15] P. Lasky,et al. Detecting Gravitational-Wave Memory with LIGO: Implications of GW150914. , 2016, Physical review letters.
[16] P. Lasky,et al. Versatile Directional Searches for Gravitational Waves with Pulsar Timing Arrays , 2015, 1510.08068.
[17] R. Manchester,et al. A study of spatial correlations in pulsar timing array data , 2015, 1510.02363.
[18] X. Siemens,et al. THE NANOGRAV NINE-YEAR DATA SET: NOISE BUDGET FOR PULSAR ARRIVAL TIMES ON INTRADAY TIMESCALES , 2015, 1512.08326.
[19] A. Lommen. Pulsar timing arrays: the promise of gravitational wave detection , 2015, Reports on progress in physics. Physical Society.
[20] Z. Arzoumanian,et al. THE NANOGRAV NINE-YEAR DATA SET: ASTROMETRIC MEASUREMENTS OF 37 MILLISECOND PULSARS , 2015, 1509.08982.
[21] Yan Wang,et al. THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND , 2015, 1508.03024.
[22] D. Stinebring,et al. THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.
[23] D. Stinebring,et al. NANOGrav CONSTRAINTS ON GRAVITATIONAL WAVE BURSTS WITH MEMORY , 2015, 1501.05343.
[24] Y. Levin,et al. Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array , 2014, 1410.3323.
[25] M. Vallisneri,et al. Low-rank approximations for large stationary covariance matrices, as used in the Bayesian and generalized-least-squares analysis of pulsar-timing data , 2014, 1407.6710.
[26] The Ligo Scientific Collaboration. Advanced LIGO , 2014, 1411.4547.
[27] L. Finn,et al. OPTIMIZATION OF NANOGRAV'S TIME ALLOCATION FOR MAXIMUM SENSITIVITY TO SINGLE SOURCES , 2014, 1409.7722.
[28] J. Gair,et al. Accelerated Bayesian model-selection and parameter-estimation in continuous gravitational-wave searches with pulsar-timing arrays , 2014, 1406.5224.
[29] J. Cordes,et al. ASSESSING PULSAR TIMING ARRAY SENSITIVITY TO GRAVITATIONAL WAVE BURSTS WITH MEMORY , 2014, 1404.5682.
[30] A. Sesana,et al. LINKING THE SPIN EVOLUTION OF MASSIVE BLACK HOLES TO GALAXY KINEMATICS , 2014, 1402.7088.
[31] S. Burke-Spolaor,et al. The gravitational-wave discovery space of pulsar timing arrays , 2013, 1309.2581.
[32] J. Ellis. A Bayesian analysis pipeline for continuous GW sources in the PTA band , 2013, 1305.0835.
[33] Chung-Pei Ma,et al. REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.
[34] M. Hobson,et al. Hyper-efficient model-independent Bayesian method for the analysis of pulsar timing data , 2012, 1210.3578.
[35] J. Cordes,et al. DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING , 2012 .
[36] L. G. Boté,et al. Laser Interferometer Space Antenna , 2012 .
[37] M. Pitkin. Extending gravitational wave burst searches with pulsar timing arrays , 2012, 1201.3573.
[38] D. Stinebring,et al. Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.
[39] Marc Favata. The gravitational-wave memory from eccentric binaries , 2011, 1108.3121.
[40] L. Finn,et al. OPTIMIZING PULSAR TIMING ARRAYS TO MAXIMIZE GRAVITATIONAL WAVE SINGLE-SOURCE DETECTION: A FIRST CUT , 2010, 1005.5163.
[41] J. Cordes,et al. A Measurement Model for Precision Pulsar Timing , 2010, 1010.3785.
[42] N. Cornish,et al. PULSAR TIMING ARRAY OBSERVATIONS OF MASSIVE BLACK HOLE BINARIES , 2010, 1008.1782.
[43] M. Pshirkov,et al. Local constraints on cosmic string loops from photometry and pulsar timing , 2009, 0911.4955.
[44] Y. Levin,et al. Gravitational-Wave Memory and Pulsar Timing Arrays , 2009, 0909.0954.
[45] N. Seto. Search for memory and inspiral gravitational waves from supermassive binary black holes with pulsar timing arrays , 2009, 0909.1379.
[46] K. Postnov,et al. Observing gravitational wave bursts in pulsar timing measurements , 2009, 0909.0742.
[47] A. Deller,et al. PRECISION SOUTHERN HEMISPHERE VLBI PULSAR ASTROMETRY. II. MEASUREMENT OF SEVEN PARALLAXES , 2009, 0906.3897.
[48] G. Hobbs. The Parkes Pulsar Timing Array , 2009, 1307.2629.
[49] Y. Zlochower,et al. Remnant masses, spins and recoils from the merger of generic black hole binaries , 2009, 0904.3541.
[50] Marc Favata. NONLINEAR GRAVITATIONAL-WAVE MEMORY FROM BINARY BLACK HOLE MERGERS , 2009, 0902.3660.
[51] Marc Favata,et al. Post-Newtonian corrections to the gravitational-wave memory for quasicircular, inspiralling compact binaries , 2008, 0812.0069.
[52] A. Vecchio,et al. Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays , 2008, 0809.3412.
[53] YANQING CHEN,et al. Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .
[54] D. Lorimer. Binary and Millisecond Pulsars , 1998, Living reviews in relativity.
[55] R. Manchester,et al. tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.
[56] R. Manchester,et al. TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.
[57] K. Gorski,et al. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.
[58] B. Iyer,et al. The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits , 2004, gr-qc/0404085.
[59] I. Cognard,et al. A Microglitch in the Millisecond Pulsar PSR B1821–24 in M28 , 2004 .
[60] I. C. D. C. B. C. O. France,et al. A Micro-glitch in the Millisecond Pulsar B1821-24 in M28 , 2004, astro-ph/0407546.
[61] A. Jaffe,et al. Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries , 2002, astro-ph/0210148.
[62] T. Damour,et al. Gravitational wave bursts from cusps and kinks on cosmic strings , 2001, gr-qc/0104026.
[63] A. Burrows,et al. Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion. , 1995, Physical review letters.
[64] M. Haehnelt. Low-frequency gravitational waves from supermassive black holes , 1994, astro-ph/9405032.
[65] Blanchet,et al. Hereditary effects in gravitational radiation. , 1992, Physical review. D, Particles and fields.
[66] Thorne,et al. Gravitational-wave bursts with memory: The Christodoulou effect. , 1992, Physical review. D, Particles and fields.
[67] Wiseman,et al. Christodoulou's nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation. , 1991, Physical review. D, Particles and fields.
[68] Christodoulou,et al. Nonlinear nature of gravitation and gravitational-wave experiments. , 1991, Physical review letters.
[69] D. Backer,et al. Constructing a Pulsar Timing Array , 1990 .
[70] K. Thorne,et al. Gravitational-wave bursts with memory and experimental prospects , 1987, Nature.
[71] S. Detweiler. Pulsar timing measurements and the search for gravitational waves , 1979 .
[72] C. Will,et al. Post-Newtonian gravitational bremsstrahlung , 1978 .
[73] Hugo D. Wahlquist,et al. Response of Doppler spacecraft tracking to gravitational radiation , 1975 .
[74] J. Dickey. The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters , 1971 .
[75] K. Malmquist. On some relations in stellar statistics , 1922 .
[76] C. V. L. Charlier,et al. Meddelanden Fran Lunds Astronomiska Observatorium. Serie II, Nr. 4. Researches into the Theory of Probability. , 1906 .