Detecting Diversification Rate Variation in Supertrees

[1]  V. Savolainen,et al.  EVOLUTIONARY RATES AND SPECIES DIVERSITY IN FLOWERING PLANTS , 2001, Evolution; international journal of organic evolution.

[2]  C. Guyer,et al.  Testing Null Models in Questions of Evolutionary Success , 1989 .

[3]  A. Mooers TREE BALANCE AND TREE COMPLETENESS , 1995, Evolution; international journal of organic evolution.

[4]  S. Stanley,et al.  Macroevolution: Pattern and Process , 1980 .

[5]  J. Goudet An Improved Procedure for Testing the Effects of Key Innovations on Rate of Speciation , 1999, The American Naturalist.

[6]  Ziheng Yang,et al.  Divergence dates for Malagasy lemurs estimated from multiple gene loci: fit with climatological events and speciation models , 2004 .

[7]  R. Raikow,et al.  Why are there so Many Kinds of Passerine Birds , 1986 .

[8]  ON DESCRIBING THE SHAPE OF ROOTED AND UNROOTED TREES , 1993 .

[9]  P H Harvey,et al.  Tempo and mode of evolution revealed from molecular phylogenies. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Yule,et al.  A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[11]  A. Janke,et al.  Molecular Timing of Primate Divergences as Estimated by Two Nonprimate Calibration Points , 1998, Journal of Molecular Evolution.

[12]  P H Harvey,et al.  Macroevolutionary inferences from primate phylogeny , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[13]  R M May,et al.  The reconstructed evolutionary process. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[14]  P. Harvey,et al.  Rate of rbcL gene sequence evolution and species diversification in flowering plants (angiosperms) , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  M. Sanderson Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. , 2002, Molecular biology and evolution.

[16]  K. McConway,et al.  NONSTOCHASTIC VARIATION OF SPECIES‐LEVEL DIVERSIFICATION RATES WITHIN ANGIOSPERMS , 2003, Evolution; international journal of organic evolution.

[17]  J. S. Rogers,et al.  CENTRAL MOMENTS AND PROBABILITY DISTRIBUTION OF COLLESS'S COEFFICIENT OF TREE IMBALANCE , 1994, Evolution; international journal of organic evolution.

[18]  M. Kennedy,et al.  SEABIRD SUPERTREES: COMBINING PARTIAL ESTIMATES OF PROCELLARIIFORM PHYLOGENY , 2002 .

[19]  A. Purvis,et al.  A phylogenetic supertree of the bats (Mammalia: Chiroptera) , 2002, Biological reviews of the Cambridge Philosophical Society.

[20]  J. Huelsenbeck,et al.  A compound poisson process for relaxing the molecular clock. , 2000, Genetics.

[21]  A. Purvis A composite estimate of primate phylogeny. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[22]  C. Guyer,et al.  Testing Whether Certain Traits have Caused Amplified Diversification: An Improved Method Based on a Model of Random Speciation and Extinction , 1993, The American Naturalist.

[23]  Charles Semple,et al.  Supertree Methods for Ancestral Divergence Dates and other Applications , 2004 .

[24]  Brian D. Farrell,et al.  "Inordinate Fondness" explained: why are there So many beetles? , 1998, Science.

[25]  B Rannala,et al.  Accommodating phylogenetic uncertainty in evolutionary studies. , 2000, Science.

[26]  S. Nee,et al.  INFERRING SPECIATION RATES FROM PHYLOGENIES , 2001, Evolution; international journal of organic evolution.

[27]  Reconstructing the history of evolutionary processes using maximum likelihood. , 1994, Society of General Physiologists series.

[28]  A. Rambaut,et al.  Estimating divergence dates from molecular sequences. , 1998, Molecular biology and evolution.

[29]  François-Joseph Lapointe,et al.  THE AVERAGE CONSENSUS PROCEDURE: COMBINATION OF WEIGHTED TREES CONTAINING IDENTICAL OR OVERLAPPING SETS OF TAXA , 1997 .

[30]  V. Savolainen,et al.  Rate of gene sequence evolution and species diversification in flowering plants: a re–evaluation , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  Michael J. Sanderson,et al.  A Nonparametric Approach to Estimating Divergence Times in the Absence of Rate Constancy , 1997 .

[32]  Brian D. Farrell,et al.  IS SPECIALIZATION A DEAD END? THE PHYLOGENY OF HOST USE IN DENDROCTONUS BARK BEETLES (SCOLYTIDAE) , 1998, Evolution; international journal of organic evolution.

[33]  J. L. Gittleman,et al.  Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia) , 1999, Biological reviews of the Cambridge Philosophical Society.

[34]  M. Donoghue,et al.  Shifts in Diversification Rate with the Origin of Angiosperms , 1994, Science.

[35]  Sean Nee,et al.  PHYLOGENIES WITHOUT FOSSILS , 1994, Evolution; international journal of organic evolution.

[36]  Paul H. Harvey,et al.  New uses for new phylogenies , 1993, European Review.

[37]  M. Sanderson,et al.  ABSOLUTE DIVERSIFICATION RATES IN ANGIOSPERM CLADES , 2001, Evolution; international journal of organic evolution.

[38]  Arne Ø. Mooers,et al.  Inferring Evolutionary Process from Phylogenetic Tree Shape , 1997, The Quarterly Review of Biology.

[39]  E. Edgington A Normal Curve Method for Combining Probability Values from Independent Experiments , 1972 .

[40]  J. Stone,et al.  Using a nonrecursive formula to determine cladogram probabilities. , 1998, Systematic biology.

[41]  Andy Purvis,et al.  Evaluating phylogenetic tree shape: two modifications to Fusco & Cronk's method. , 2002, Journal of theoretical biology.

[42]  François-Joseph Lapointe,et al.  Everything You always wanted to Know about the Average Consensus, and More , 2004 .

[43]  Jonathan Silvertown,et al.  PHYLOGENETIC ANALYSIS OF TRAIT EVOLUTION AND SPECIES DIVERSITY VARIATION AMONG ANGIOSPERM FAMILIES , 1999, Evolution; international journal of organic evolution.

[44]  W. Bruno,et al.  Performance of a divergence time estimation method under a probabilistic model of rate evolution. , 2001, Molecular biology and evolution.

[45]  Dan Graur,et al.  Speciational Evolution: a Phylogenetic Test With Allozymes in Sceloporus (Reptilia) , 1989, Cladistics : the international journal of the Willi Hennig Society.

[46]  Hirohisa Kishino,et al.  Divergence time and evolutionary rate estimation with multilocus data. , 2002, Systematic biology.

[47]  D. H. Colless,et al.  Phylogenetics: The Theory and Practice of Phylogenetic Systematics. , 1982 .

[48]  E. Edgington,et al.  Combining Probabilities from Discrete Probability Distributions , 1984 .

[49]  Joseph B. Slowinski,et al.  PROBABILITIES OF n-TREES UNDER TWO MODELS: A DEMONSTRATION THAT ASYMMETRICAL INTERIOR NODES ARE NOT IMPROBABLE , 1990 .

[50]  K. Chan,et al.  Accounting for Mode of Speciation Increases Power and Realism of Tests of Phylogenetic Asymmetry , 1999, The American Naturalist.

[51]  R. Vos,et al.  Reconstructing Divergence Times for Supertrees , 2004 .

[52]  Frederick R. Adler,et al.  Stumped by Trees? A Generalized Null Model for Patterns of Organismal Diversity , 1995, The American Naturalist.

[53]  M. Sanderson,et al.  Age and rate of diversification of the Hawaiian silversword alliance (Compositae). , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  E. Harding The probabilities of rooted tree-shapes generated by random bifurcation , 1971, Advances in Applied Probability.

[55]  W. Allen Wallis,et al.  Compounding Probabilities from Independent Significance Tests , 1942 .

[56]  M. Donoghue,et al.  Phylogenies and angiosperm diversification , 1993, Paleobiology.

[57]  James S. Rogers,et al.  Response of Colless's tree imbalance to number of terminal taxa , 1993 .

[58]  V. Albert,et al.  Molecular rates parallel diversification contrasts between carnivorous plant sister lineages , 2002 .

[59]  M. Slatkin,et al.  SEARCHING FOR EVOLUTIONARY PATTERNS IN THE SHAPE OF A PHYLOGENETIC TREE , 1993, Evolution; international journal of organic evolution.

[60]  W. Li,et al.  Evidence for higher rates of nucleotide substitution in rodents than in man. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[61]  D. Kendall On the Generalized "Birth-and-Death" Process , 1948 .

[62]  Oliver G. Pybus,et al.  Testing macro–evolutionary models using incomplete molecular phylogenies , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[63]  E. Paradis Testing for Constant Diversification Rates Using Molecular Phylogenies: A General Approach Based on Statistical Tests for Goodness of Fit , 1998 .

[64]  Giuseppe Fusco,et al.  A new method for evaluating the shape of large phylogenies , 1995 .

[65]  E. Paradis Detecting Shifts in Diversification Rates without Fossils , 1998, The American Naturalist.

[66]  C. Guyer,et al.  COMPARISONS OF OBSERVED PHYLOGENETIC TOPOLOGIES WITH NULL EXPECTATIONS AMONG THREE MONOPHYLETIC LINEAGES , 1991, Evolution; international journal of organic evolution.

[67]  W. Maddison RECONSTRUCTING CHARACTER EVOLUTION ON POLYTOMOUS CLADOGRAMS , 1989, Cladistics : the international journal of the Willi Hennig Society.

[68]  Linda Partridge,et al.  These hierarchical views of life: phylogenies and metapopulations , 1991 .

[69]  M. Donoghue,et al.  Angiosperm family pairs: Preliminary phylogenetic analysis , 1994 .

[70]  J. Hey USING PHYLOGENETIC TREES TO STUDY SPECIATION AND EXTINCTION , 1992, Evolution; international journal of organic evolution.

[71]  Michael J. Sanderson,et al.  MOLECULAR PHYLOGENY OF THE "TEMPERATE HERBACEOUS TRIBES" OF PAPILIONOID LEGUMES: A SUPERTREE APPROACH , 2000 .

[72]  M. Donoghue,et al.  Reconstructing shifts in diversification rates on phylogenetic trees. , 1996, Trends in ecology & evolution.

[73]  C. Guyer,et al.  ADAPTIVE RADIATION AND THE TOPOLOGY OF LARGE PHYLOGENIES , 1993, Evolution; international journal of organic evolution.

[74]  P. Harvey,et al.  Getting to the roots of flowering plant diversity. , 1994, Science.

[75]  R. Hulbert Taxonomic evolution in North American Neogene horses (subfamily Equinae): the rise and fall of an adaptive radiation , 1993, Paleobiology.

[76]  S. Mazer,et al.  Angiosperm growth habit, dispersal and diversification reconsidered , 2005, Evolutionary Ecology.

[77]  Andy Purvis,et al.  Power of eight tree shape statistics to detect nonrandom diversification: a comparison by simulation of two models of cladogenesis. , 2002, Systematic biology.

[78]  Stephen Jay Gould,et al.  The shape of evolution: a comparison of real and random clades , 1977, Paleobiology.

[79]  H. Kishino,et al.  Estimating the rate of evolution of the rate of molecular evolution. , 1998, Molecular biology and evolution.

[80]  J. Felsenstein Phylogenies from molecular sequences: inference and reliability. , 1988, Annual review of genetics.

[81]  R. Ricklefs,et al.  SPECIES RICHNESS WITHIN FAMILIES OF FLOWERING PLANTS , 1994, Evolution; international journal of organic evolution.

[82]  Joseph B. Slowinski,et al.  Testing the Stochasticity of Patterns of Organismal Diversity: An Improved Null Model , 1989, The American Naturalist.

[83]  Fredrik Ronquist,et al.  Patterns of animal dispersal, vicariance and diversification in the Holarctic , 2001 .

[84]  O. Pybus,et al.  New inferences from tree shape: numbers of missing taxa and population growth rates. , 2002, Systematic biology.

[85]  James S. Rogers,et al.  CENTRAL MOMENTS AND PROBABILITY DISTRIBUTIONS OF THREE MEASURES OF PHYLOGENETIC TREE IMBALANCE , 1996 .

[86]  B. Bremer,et al.  Fruit Characteristics, Life Forms, and Species Richness in the Plant Family Rubiaceae , 1991, The American Naturalist.

[87]  S. Heard,et al.  PATTERNS IN TREE BALANCE AMONG CLADISTIC, PHENETIC, AND RANDOMLY GENERATED PHYLOGENETIC TREES , 1992, Evolution; international journal of organic evolution.

[88]  Olaf R. P. Bininda-Emonds,et al.  The adaptive significance of coloration in lagomorphs , 2003 .

[89]  B. Bremer,et al.  Evolution of fruit characters and dispersal modes in the tropical family Rubiaceae , 1992 .

[90]  Michael S. Y. Lee Molecular Clock Calibrations and Metazoan Divergence Dates , 1999, Journal of Molecular Evolution.

[91]  G. Furnas The generation of random, binary unordered trees , 1984 .

[92]  Andrew Rambaut,et al.  End-Epi: an application for inferring phylogenetic and population dynamical processes from molecular sequences , 1997, Comput. Appl. Biosci..

[93]  Stephen Jay Gould,et al.  Stochastic Models of Phylogeny and the Evolution of Diversity , 1973, The Journal of Geology.

[94]  Z. Yang,et al.  Estimation of primate speciation dates using local molecular clocks. , 2000, Molecular biology and evolution.

[95]  K. Chan,et al.  Whole-tree methods for detecting differential diversification rates. , 2002, Systematic biology.

[96]  M. Donoghue,et al.  Phylogenetic Uncertainties and Sensitivity Analyses in Comparative Biology , 1996 .

[97]  B. Bremer,et al.  POLLINATION SYSTEMS, DISPERSAL MODES, LIFE FORMS, AND DIVERSIFICATION RATES IN ANGIOSPERM FAMILIES , 1992, Evolution; international journal of organic evolution.

[98]  E. Paradis Assessing temporal variations in diversification rates from phylogenies: estimation and hypothesis testing , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[99]  Nicolas Salamin,et al.  Building supertrees: an empirical assessment using the grass family (Poaceae). , 2002, Systematic biology.

[100]  A. Wilson,et al.  Rates of albumin evolution in primates. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[101]  M. Sanderson,et al.  DOES CLADISTIC INFORMATION AFFECT INFERENCES ABOUT BRANCHING RATES , 1993 .

[102]  E. Wiley Phylogenetics: The Theory and Practice of Phylogenetic Systematics , 1981 .

[103]  A Rzhetsky,et al.  Phylogenetic test of the molecular clock and linearized trees. , 1995, Molecular biology and evolution.

[104]  Eugene S. Edgington,et al.  An Additive Method for Combining Probability Values from Independent Experiments , 1972 .

[105]  R M May,et al.  Extinction rates can be estimated from molecular phylogenies. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[106]  M. Steel,et al.  Distributions of cherries for two models of trees. , 2000, Mathematical biosciences.

[107]  M. Sanderson,et al.  Diversification rates in a temperate legume clade: Are there “so many species” of Astragalus (Fabaceae)? , 1996 .

[108]  Yoh Iwasa,et al.  INFERRING THE RATES OF BRANCHING AND EXTINCTION FROM MOLECULAR PHYLOGENIES , 1995, Evolution; international journal of organic evolution.

[109]  S. Nee,et al.  Phylogenetics and speciation. , 2001, Trends in ecology & evolution.