Low cost PC based scanning Kelvin probe

We have developed a novel, low cost, scanning Kelvin probe (SKP) system that can measure work function (wf) and surface potential (sp) topographies to within 1 meV energy resolution. The control and measurement subcomponents are PC based and incorporate a flexible user interface, permitting software control of major parameters and allowing easy user implementation via automatic setup and scanning procedures. We review the mode of operation and design features of the SKP including the digital oscillator, the compact ambient voice-coil head-stage, and signal processing techniques. This system offers unique tip-to-sample spacing control (to within 40 nm) which provides a method of simultaneously imaging sample height topographies and is essential to avoid spurious or “apparent” wf changes due to scanning-induced spacing changes. We illustrate SKP operation in generating high resolution wf/sp profiles of metal interfaces (as a tip characterization procedure) and operational electronic devices. The SKP potenti...

[1]  T. Fort,et al.  Measurement of contact potential difference between metals in liquid environments , 1968 .

[2]  I. Baikie,et al.  Characterization of Oxides and Thin Films , 1993 .

[3]  I. Baikie,et al.  Application of Surface Photovoltage Spectroscopy in Surface Analysis , 1992 .

[4]  C. Domenicali,et al.  Irreversible Thermodynamics of Thermoelectricity , 1954 .

[5]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[6]  Lord Kelvin,et al.  V. Contact electricity of metals , 1898 .

[7]  Jiri Janata,et al.  Chemical modulation of the electron work function , 1991 .

[8]  R. Behm,et al.  Combined work function and STM study on growth, alloying and oxidation of epitaxial aluminum films on Ru(0001) , 1996 .

[9]  W. A. Zisman,et al.  A NEW METHOD OF MEASURING CONTACT POTENTIAL DIFFERENCES IN METALS , 1932 .

[10]  I. Baikie Very Low Pressure Oxidation of Si and Ge Surfaces , 1990 .

[11]  L. B. Harris,et al.  Vibrating capacitor measurement of surface charge , 1984 .

[12]  K. Besocke,et al.  Piezoelectric driven Kelvin probe for contact potential difference studies , 1976 .

[13]  A. Broniatowski,et al.  A high-resolution scanning Kelvin probe microscope for contact potential measurements on the 100 nm scale , 1997 .

[14]  H. Baumgärtner,et al.  Micro Kelvin probe for local work‐function measurements , 1988 .

[15]  J. Donnet,et al.  Conditions necessary to get meaningful measurements from the Kelvin method , 1982 .

[16]  S. Saito,et al.  Improvements of the piezoelectric driven Kelvin probe , 1984 .

[17]  Integrated automatic modular measuring system , 1988 .

[18]  J. Carette,et al.  Le potentiel des surfaces métalliques soumises à un bombardement électronique dans un vide moyen , 1968 .

[19]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[20]  V. L. Strashilov,et al.  An improved apparatus for surface photovoltage studies with a bimorphous piezoelectric Kelvin probe , 1987 .

[21]  I. Baikie,et al.  Automatic kelvin probe compatible with ultrahigh vacuum , 1989 .

[22]  I. D. Baikie,et al.  Analysis of stray capacitance in the Kelvin method , 1991 .

[23]  A. Broniatowski,et al.  Design and implementation of a Kelvin microprobe for contact potential measurements at the submicron scale , 1994 .

[24]  R. Behm,et al.  Preferential island nucleation at the elbows of the Au(111) herringbone reconstruction through place exchange , 1996 .

[25]  P. J. Estrup,et al.  Noise and the Kelvin method , 1991 .

[26]  C. Vayenas,et al.  Dependence of catalytic rates on catalyst work function , 1990, Nature.