A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media

SUMMARY A hierarchical multiscale framework is proposed to model the mechanical behaviour of granular media. The framework employs a rigorous hierarchical coupling between the FEM and the discrete element method (DEM). To solve a BVP, the FEM is used to discretise the macroscopic geometric domain into an FEM mesh. A DEM assembly with memory of its loading history is embedded at each Gauss integration point of the mesh to serve as the representative volume element (RVE). The DEM assembly receives the global deformation at its Gauss point from the FEM as input boundary conditions and is solved to derive the required constitutive relation at the specific material point to advance the FEM computation. The DEM computation employs simple physically based contact laws in conjunction with Coulomb's friction for interparticle contacts to capture the loading-history dependence and highly nonlinear dissipative response of a granular material. The hierarchical scheme helps to avoid the phenomenological assumptions on constitutive relation in conventional continuum modelling and retains the computational efficiency of FEM in solving large-scale BVPs. The hierarchical structure also makes it ideal for distributed parallel computing to fully unleash its predictive power. Importantly, the framework offers rich information on the particle level with direct link to the macroscopic material response, which helps to shed lights on cross-scale understanding of granular media. The developed framework is first benchmarked by a simulation of single-element drained test and is then applied to the predictions of strain localisation for sand subject to monotonic biaxial compression, as well as the liquefaction and cyclic mobility of sand in cyclic simple shear tests. It is demonstrated that the proposed method may reproduce interesting experimental observations that are otherwise difficult to be captured by conventional FEM or pure DEM simulations, such as the inception of shear band under smooth symmetric boundary conditions, non-coaxial granular response, large dilation and rotation at the edges of shear band and critical state reached within the shear band. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  H. Y. Sze,et al.  Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions , 2011 .

[2]  Vincent Visseq,et al.  High performance computing of discrete nonsmooth contact dynamics with domain decomposition , 2013 .

[3]  Xikui Li,et al.  A bridging scale method for granular materials with discrete particle assembly – Cosserat continuum modeling , 2011 .

[4]  M. Satake,et al.  Fabric tensor in granular materials , 1982 .

[5]  Xuxin Tu,et al.  Multiscale framework for behavior prediction in granular media , 2009 .

[6]  Julien Réthoré,et al.  Energy conservation of atomistic/continuum coupling , 2009 .

[7]  Y. Dafalias,et al.  Study of anisotropic shear strength of granular materials using DEM simulation , 2011 .

[8]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[9]  Guilhem Mollon,et al.  Fourier–Voronoi-based generation of realistic samples for discrete modelling of granular materials , 2012, Granular Matter.

[10]  小田 匡寛,et al.  FABRIC TENSOR FOR DISCONTINUOUS GEOLOGICAL MATERIALS , 1982 .

[11]  Marte Gutierrez,et al.  Non-coaxiality and energy dissipation in granular materials , 2000 .

[12]  P. A. Cundall,et al.  NUMERICAL MODELLING OF DISCONTINUA , 1992 .

[13]  Andrei V. Lyamin,et al.  Computational Cam clay plasticity using second-order cone programming , 2012 .

[14]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[15]  Lutz Gross,et al.  Interface modeling in incompressible media using level sets in Escript , 2007 .

[16]  H. Yu,et al.  On a class of non-coaxial plasticity models for granular soils , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Gioacchino Viggiani,et al.  Multiscale modeling and characterization of granular matter: From grain kinematics to continuum mechanics , 2011 .

[18]  A. Munjiza The Combined Finite-Discrete Element Method: Munjiza/Discrete Element Method , 2004 .

[19]  A. Schofield,et al.  Critical State Soil Mechanics , 1968 .

[20]  Christian Miehe,et al.  A framework for micro–macro transitions in periodic particle aggregates of granular materials , 2004 .

[21]  Jiansheng Xiang,et al.  Finite strain, finite rotation quadratic tetrahedral element for the combined finite–discrete element method , 2009 .

[22]  N. P. Kruyt,et al.  Statics and kinematics of discrete Cosserat-type granular materials , 2003 .

[23]  P. Wriggers,et al.  A two-scale model of granular materials , 2012 .

[24]  Stefan Luding,et al.  Micro¿macro transition for anisotropic, frictional granular packings , 2004 .

[25]  A. Munjiza,et al.  Fracture and fragmentation of thin shells using the combined finite–discrete element method , 2013 .

[26]  René de Borst,et al.  Computational homogenization for adhesive and cohesive failure in quasi‐brittle solids , 2010 .

[27]  Esteban Rougier,et al.  Computational Mechanics of Discontinua , 2011 .

[28]  Olivier Pouliquen,et al.  A constitutive law for dense granular flows , 2006, Nature.

[29]  Ronaldo I. Borja,et al.  Micromechanics of granular media. Part II : Overall tangential moduli and localization model for periodic assemblies of circular disks , 1997 .

[30]  Zhiwei Gao,et al.  Strain localization and fabric evolution in sand , 2013 .

[31]  Jacek Tejchman,et al.  Finite element study of patterns of shear zones in granular bodies during plane strain compression , 2010 .

[32]  Jidong Zhao,et al.  Rotational Resistance and Shear-Induced Anisotropy in Granular Media , 2014 .

[33]  M. Oda,et al.  Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils , 1998 .

[34]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[35]  R. Chambon,et al.  Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography , 1996 .

[36]  Ronaldo I. Borja,et al.  Cam-Clay plasticity, Part IV : Implicit integration of anisotropic bounding surface model with nonlinear hyperelasticity and ellipsoidal loading function , 2001 .

[37]  Mohamed Rouainia,et al.  Explicit stress integration of complex soil models , 2005 .

[38]  A. Schofield,et al.  On The Yielding of Soils , 1958 .

[39]  Ekkehard Ramm,et al.  From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses , 2003 .

[40]  J. Grotowski,et al.  The influence of non-coaxiality on shear banding in viscous-plastic materials , 2010 .

[41]  Dion Weatherley,et al.  Scaling Benchmark of ESyS-Particle for Elastic Wave Propagation Simulations , 2010, 2010 IEEE Sixth International Conference on e-Science.

[42]  José E. Andrade,et al.  Capturing strain localization in dense sands with random density , 2006 .

[43]  J. Baker,et al.  Random porosity fields and their influence on the stability of granular media , 2008 .

[44]  Towards multiscale computation of confined granular media-Contact forces , stresses and tangent operators - , 2007 .

[45]  Wei Wu,et al.  Non‐coaxiality and stress–dilatancy rule in granular materials: FE investigation within micro‐polar hypoplasticity , 2009 .

[46]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[47]  Xikui Li,et al.  A generalized Hill’s lemma and micromechanically based macroscopic constitutive model for heterogeneous granular materials , 2010 .

[48]  Jidong Zhao,et al.  The signature of shear-induced anisotropy in granular media , 2013 .

[49]  Julien Réthoré,et al.  A coupled molecular dynamics and extended finite element method for dynamic crack propagation , 2010 .

[50]  Christian Miehe,et al.  Homogenization and two‐scale simulations of granular materials for different microstructural constraints , 2010 .

[51]  Esteban Samaniego,et al.  AES for multiscale localization modeling in granular media , 2011 .

[52]  Yannis F. Dafalias,et al.  A critical state sand plasticity model accounting for fabric evolution , 2014 .

[53]  Gaël Combe,et al.  Two-scale modeling of granular materials: a DEM-FEM approach , 2011 .

[54]  J. Bray,et al.  Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme , 2004 .

[55]  Xikui Li,et al.  A micro–macro homogenization approach for discrete particle assembly – Cosserat continuum modeling of granular materials , 2010 .

[56]  Scott W. Sloan,et al.  Substepping schemes for the numerical integration of elastoplastic stress–strain relations , 1987 .

[57]  A. Munjiza The Combined Finite-Discrete Element Method , 2004 .

[58]  Ronaldo I. Borja,et al.  Micromechanics of granular media Part I: Generation of overall constitutive equation for assemblies of circular disks , 1995 .

[59]  Ning Guo,et al.  Unique critical state characteristics in granular media considering fabric anisotropy , 2013 .

[60]  Fpt Frank Baaijens,et al.  An approach to micro-macro modeling of heterogeneous materials , 2001 .

[61]  Yannis F. Dafalias,et al.  Anisotropic Critical State Theory: Role of Fabric , 2012 .

[62]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[63]  S. Nemat-Nasser,et al.  A Micromechanical Description of Granular Material Behavior , 1981 .

[64]  Modeling of a cohesive granular materials by a multi-scale approach , 2013 .

[65]  Jidong Zhao,et al.  A Hierarchical Model for Cross-scale Simulation of Granular Media , 2013 .

[66]  N. P. Kruyt,et al.  Statistical theories for the elastic moduli of two-dimensional assemblies of granular materials , 1998 .

[67]  Michael A. Mooney,et al.  A Unique Critical State for Sand , 1998 .