Solvothermal Synthesis of Porous FeO –CeO2− Composite Spheres with High Mixing Homogeneity

[1]  K. Kobiro,et al.  Nitrilethermal synthesis of CeO2-based composite nanoparticles as Ru and Pd catalyst supports for CO2 methanation and CH4 oxidation , 2023, The Journal of Supercritical Fluids.

[2]  Xitao Wang,et al.  Highly Dispersed Antisintering Cu Catalyst from Cu–Al Spinel Oxide Obtained by Using Surface Solid Reaction for Reverse Water–Gas Shift , 2023, Industrial & Engineering Chemistry Research.

[3]  S. Ivanova,et al.  Spinel ferrite catalysts for CO2 reduction via reverse water gas shift reaction , 2023, Journal of CO2 Utilization.

[4]  M. V. Ganduglia-Pirovano,et al.  Highly Active and Stable Ni/La-Doped Ceria Material for Catalytic CO2 Reduction by Reverse Water-Gas Shift Reaction , 2022, ACS applied materials & interfaces.

[5]  M. Khraisheh,et al.  A Review of CeO2 Supported Catalysts for CO2 Reduction to CO through the Reverse Water Gas Shift Reaction , 2022, Catalysts.

[6]  M. Ohtani,et al.  Insights into the solvothermal reaction for synthesizing tin(iv) oxide porous spheres , 2022, RSC advances.

[7]  Y. Qu,et al.  Influence of Oxygen Vacancies of CeO2 on Reverse Water Gas Shift Reaction , 2022, Journal of Catalysis.

[8]  Mariusz Radtke,et al.  Elucidating CO2 Hydrogenation over In2O3 Nanoparticles using Operando UV/Vis and Impedance Spectroscopies , 2022, Angewandte Chemie.

[9]  C. Carreño-Gallardo,et al.  Nanostructured t-YSZ/Fe3O4 powdered composite obtained via AACVD method as a promising reinforcing material for metal matrices , 2022, Physica B: Condensed Matter.

[10]  Changjian Zhou,et al.  The Catalytic Performance of Ga2O3−CeO2 Composite Oxides over Reverse Water Gas Shift Reaction , 2022, ChemCatChem.

[11]  Shimin Kang,et al.  Designing FeO@graphite@C Nanocomposites Based on Humins as Efficient Catalysts for Reverse Water-Gas Shift. , 2021, ACS applied materials & interfaces.

[12]  M. Ziemba,et al.  Elucidating the Mechanism of the Reverse Water–Gas Shift Reaction over Au/CeO2 Catalysts Using Operando and Transient Spectroscopies , 2021, Applied Catalysis B: Environmental.

[13]  N. Braidy,et al.  Application of Ni–Spinel in the Chemical-Looping Conversion of CO2 to CO via Induction-Generated Oxygen Vacancies , 2021 .

[14]  Peijie Ma,et al.  Atomically dispersed Pt/CeO2 catalyst with superior CO selectivity in reverse water gas shift reaction , 2021 .

[15]  Kai Kan,et al.  Ce3+-enriched spherical porous ceria with an enhanced oxygen storage capacity , 2021, RSC advances.

[16]  W. Nowicki,et al.  Application of SiO2-La2O3 amorphous mesoporous nanocomposites obtained by modified sol–gel method in high temperature catalytic reactions , 2020 .

[17]  Jing Xu,et al.  Probing the surface of promoted CuO-Cr2O3-Fe2O3 catalysts during CO2 activation , 2020 .

[18]  Jie Zhu,et al.  Variation in the In2O3 Crystal Phase Alters Catalytic Performance toward the Reverse Water Gas Shift Reaction , 2020 .

[19]  M. Cheng,et al.  Application of Ceria in CO2 Conversion Catalysis , 2020 .

[20]  Lili Lin,et al.  In Situ Characterization of Cu/CeO2 Nanocatalysts for CO2 Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity , 2018, The Journal of Physical Chemistry C.

[21]  Manfred Martin,et al.  Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni) 3 O 4 high entropy oxide characterized by spinel structure , 2018 .

[22]  H. Nguyen,et al.  One-Step Direct Synthesis of SiO2-TiO2Composite Nanoparticle Assemblies with Hollow Spherical Morphology: One-Step Direct Synthesis of SiO2-TiO2Composite Nanoparticle Assemblies with Hollow Spherical Morphology , 2017 .

[23]  R. Lobo,et al.  Fe/γ-Al2O3 and Fe–K/γ-Al2O3 as reverse water-gas shift catalysts , 2016 .

[24]  C. Detavernier,et al.  Deactivation Study of Fe2O3–CeO2 during Redox Cycles for CO Production from CO2 , 2016 .

[25]  Shudong Wang,et al.  CeO2–ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming , 2013 .

[26]  Jianlin Shi On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. , 2013, Chemical reviews.

[27]  Z. Kaszkur,et al.  Reduction of Fe2O3 with hydrogen , 2010 .

[28]  K. Hashimoto,et al.  First observation of phase transformation of all four Fe(2)O(3) phases (gamma --> epsilon --> beta --> alpha-phase). , 2009, Journal of the American Chemical Society.