Rotational micromachining tool controlled by optical radiation pressure

This paper describes a new approach for micromachining using optical radiation pressure, which can not only trap and manipulate, but also rotate a dielectric particle with micrometer size. In order to verify the feasibility of our proposed micromachining, we fabricated a shuttlecock optical rotator as a rotational micromachining tool from a silica particle (5μm in diameter) by focused ion beam (FIB). Fundamental experiments were performed about the influence of focus point and laser power on the rotational properties of the machining tool. Furthermore, by traversing the rotating tool over the silicon wafer surface, it was found that the micro groove with several nm in depth could be generated.