Pervasive roles of microRNAs in cardiovascular biology

[1]  E. Olson,et al.  MicroRNA-218 Regulates Vascular Patterning by Modulation of Slit-Robo Signaling , 2010, Circulation research.

[2]  S. Kauppinen,et al.  Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. , 2010, The Journal of clinical investigation.

[3]  Stefanie Dimmeler,et al.  Circulating MicroRNAs in Patients With Coronary Artery Disease , 2010, Circulation research.

[4]  Xiaoxia Qi,et al.  Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. , 2010, Genes & development.

[5]  Jing Jiang,et al.  miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. , 2010, Genes & development.

[6]  F. Crea,et al.  MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. , 2010, Physiological genomics.

[7]  V. Ambros MicroRNAs: Genetically Sensitized Worms Reveal New Secrets , 2010, Current Biology.

[8]  A. Abbott,et al.  Loss of Individual MicroRNAs Causes Mutant Phenotypes in Sensitized Genetic Backgrounds in C. elegans , 2010, Current Biology.

[9]  Qingbo Xu,et al.  Short Communication: Asymmetric Dimethylarginine Impairs Angiogenic Progenitor Cell Function in Patients With Coronary Artery Disease Through a MicroRNA-21–Dependent Mechanism , 2010, Circulation research.

[10]  Anton J. Enright,et al.  The miR-144/451 locus is required for erythroid homeostasis , 2010, The Journal of experimental medicine.

[11]  T. Shioda,et al.  MicroRNA-33 and the SREBP Host Genes Cooperate to Control Cholesterol Homeostasis , 2010, Science.

[12]  B. Shen,et al.  Intronic miR-301 feedback regulates its host gene, ska2, in A549 cells by targeting MEOX2 to affect ERK/CREB pathways. , 2010, Biochemical and biophysical research communications.

[13]  Caroline E. Burns,et al.  The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis , 2010, Development.

[14]  Y. Suárez,et al.  MicroRNAs Are Necessary for Vascular Smooth Muscle Growth, Differentiation, and Function , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[15]  E. Olson,et al.  MicroRNA regulatory networks in cardiovascular development. , 2010, Developmental cell.

[16]  M. Loda,et al.  Identification of the miR-106b~25 MicroRNA Cluster as a Proto-Oncogenic PTEN-Targeting Intron That Cooperates with Its Host Gene MCM7 in Transformation , 2010, Science Signaling.

[17]  E. Olson,et al.  MicroRNAs add a new dimension to cardiovascular disease. , 2010, Circulation.

[18]  M. Weiss,et al.  MicroRNAs in erythropoiesis , 2010, Current opinion in hematology.

[19]  H. Horvitz,et al.  Many Families of C. elegans MicroRNAs Are Not Essential for Development or Viability , 2010, Current Biology.

[20]  Da-Zhi Wang,et al.  MicroRNAs in Cardiac Remodeling and Disease , 2010, Journal of cardiovascular translational research.

[21]  E. Olson,et al.  Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486 , 2010, Proceedings of the National Academy of Sciences.

[22]  S. Kauppinen,et al.  Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection , 2010, Science.

[23]  K. Fogarty,et al.  MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis , 2010, Nature.

[24]  Carsten Marr,et al.  Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects , 2010, BMC Genomics.

[25]  M. Hristov,et al.  Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection , 2009, Science Signaling.

[26]  E. Olson,et al.  A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. , 2009, Developmental cell.

[27]  G. Hirokawa,et al.  Plasma miR-208 as a biomarker of myocardial injury. , 2009, Clinical chemistry.

[28]  Ciro Indolfi,et al.  The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease , 2009, Cell Death and Differentiation.

[29]  John McAnally,et al.  MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. , 2009, Genes & development.

[30]  Jian-Fu Chen,et al.  MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. , 2009, The Journal of clinical investigation.

[31]  Johanna Schneider,et al.  Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. , 2009, The Journal of clinical investigation.

[32]  Luigi Naldini,et al.  Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications , 2009, Nature Reviews Genetics.

[33]  R. Jaenisch,et al.  Loss of Cardiac microRNA-Mediated Regulation Leads to Dilated Cardiomyopathy and Heart Failure , 2009, Circulation research.

[34]  Jianqin Jiao,et al.  miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy , 2009, Proceedings of the National Academy of Sciences.

[35]  Chunxiang Zhang,et al.  MicroRNA-145, a Novel Smooth Muscle Cell Phenotypic Marker and Modulator, Controls Vascular Neointimal Lesion Formation , 2009, Circulation research.

[36]  Deepak Srivastava,et al.  miR-145 and miR-143 Regulate Smooth Muscle Cell Fate Decisions , 2009, Nature.

[37]  Stefanie Dimmeler,et al.  MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice , 2009, Science.

[38]  M. Latronico,et al.  MicroRNAs and cardiac pathology , 2009, Nature Reviews Cardiology.

[39]  G. Pan,et al.  MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and Represses Pluripotency in Human Embryonic Stem Cells , 2009, Cell.

[40]  S. Vatner,et al.  Downregulation of MiR-199a Derepresses Hypoxia-Inducible Factor-1α and Sirtuin 1 and Recapitulates Hypoxia Preconditioning in Cardiac Myocytes , 2009, Circulation research.

[41]  G. Nuovo,et al.  MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. , 2009, Cardiovascular research.

[42]  D. Srivastava,et al.  MicroRNA regulation of cardiovascular development. , 2009, Circulation research.

[43]  Derek J Van Booven,et al.  Reciprocal Regulation of Myocardial microRNAs and Messenger RNA in Human Cardiomyopathy and Reversal of the microRNA Signature by Biomechanical Support , 2009, Circulation.

[44]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[45]  P. Quax,et al.  Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis , 2008, Journal of cellular and molecular medicine.

[46]  W. Rottbauer,et al.  MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts , 2008, Nature.

[47]  K. Stankunas,et al.  Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126 , 2008, Development.

[48]  R. D. de Weger,et al.  Changes in regulatory microRNA expression in myocardium of heart failure patients on left ventricular assist device support. , 2008, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[49]  E. Olson,et al.  microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. , 2008, Genes & development.

[50]  D. Srivastava,et al.  microRNA-138 modulates cardiac patterning during embryonic development , 2008, Proceedings of the National Academy of Sciences.

[51]  E. Olson,et al.  Toward microRNA-based therapeutics for heart disease: the sense in antisense. , 2008, Circulation research.

[52]  Jeffrey E. Thatcher,et al.  Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis , 2008, Proceedings of the National Academy of Sciences.

[53]  Ru-Fang Yeh,et al.  miR-126 regulates angiogenic signaling and vascular integrity. , 2008, Developmental cell.

[54]  John McAnally,et al.  The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. , 2008, Developmental cell.

[55]  S. Barik,et al.  An intronic microRNA silences genes that are functionally antagonistic to its host gene , 2008, Nucleic acids research.

[56]  Yanjie Lu,et al.  Down-regulation of miR-1/miR-133 Contributes to Re-expression of Pacemaker Channel Genes HCN2 and HCN4 in Hypertrophic Heart*♦ , 2008, Journal of Biological Chemistry.

[57]  Shangqin Guo,et al.  MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. , 2008, Developmental cell.

[58]  S. Kauppinen,et al.  LNA-mediated microRNA silencing in non-human primates , 2008, Nature.

[59]  R. Yeh,et al.  MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. , 2008, Cell stem cell.

[60]  O. Kirak,et al.  Regulation of progenitor cell proliferation and granulocyte function by microRNA-223 , 2008, Nature.

[61]  B. Bruneau The developmental genetics of congenital heart disease , 2008, Nature.

[62]  Michael D. Schneider,et al.  Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure , 2008, Proceedings of the National Academy of Sciences.

[63]  Joshua T. Mendell,et al.  MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1 , 2008, Proceedings of the National Academy of Sciences.

[64]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[65]  Huiling Xue,et al.  MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. , 2008, Blood.

[66]  E. Olson,et al.  Cardiac plasticity. , 2008, The New England journal of medicine.

[67]  Chaoqian Xu,et al.  The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2 , 2011, Nature Medicine.

[68]  E. Olson,et al.  An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133 , 2007, Proceedings of the National Academy of Sciences.

[69]  Luigi Naldini,et al.  Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state , 2007, Nature Biotechnology.

[70]  O. Kirak,et al.  Regulation of Progenitor Cell Proliferation and Granulocyte Function by microRNA-223. , 2007 .

[71]  Sek Won Kong,et al.  Altered microRNA expression in human heart disease. , 2007, Physiological genomics.

[72]  A. Schier,et al.  Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by miR-430 , 2007, Science.

[73]  E. Olson,et al.  MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. , 2007, The Journal of clinical investigation.

[74]  Margaret S. Ebert,et al.  MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells , 2007, Nature Methods.

[75]  Anton J. Enright,et al.  A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. , 2007, Genes & development.

[76]  I. Kasman,et al.  EGFL7 regulates the collective migration of endothelial cells by restricting their spatial distribution , 2007, Development.

[77]  Yanjie Lu,et al.  Retracted: Novel approaches for gene‐specific interference via manipulating actions of microRNAs: Examination on the pacemaker channel genes HCN2 and HCN4 , 2007, Journal of cellular physiology.

[78]  Praveen Sethupathy,et al.  Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. , 2007, American journal of human genetics.

[79]  Chunxiang Zhang,et al.  MicroRNA Expression Signature and Antisense-Mediated Depletion Reveal an Essential Role of MicroRNA in Vascular Neointimal Lesion Formation , 2007, Circulation research.

[80]  C. Croce,et al.  MicroRNA-133 controls cardiac hypertrophy , 2007, Nature Medicine.

[81]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[82]  Michael T. McManus,et al.  Dysregulation of Cardiogenesis, Cardiac Conduction, and Cell Cycle in Mice Lacking miRNA-1-2 , 2007, Cell.

[83]  Thomas Thum,et al.  MicroRNAs in the Human Heart: A Clue to Fetal Gene Reprogramming in Heart Failure , 2007, Circulation.

[84]  Wen-Hsiung Li,et al.  Human polymorphism at microRNAs and microRNA target sites , 2007, Proceedings of the National Academy of Sciences.

[85]  C. Croce,et al.  CD34+ hematopoietic stem-progenitor cell microRNA expression and function: A circuit diagram of differentiation control , 2006, Proceedings of the National Academy of Sciences.

[86]  N. Rajewsky,et al.  Natural selection on human microRNA binding sites inferred from SNP data , 2006, Nature Genetics.

[87]  E. Olson,et al.  A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure , 2006, Proceedings of the National Academy of Sciences.

[88]  Florian Caiment,et al.  A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep , 2006, Nature Genetics.

[89]  Yong Zhao,et al.  Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis , 2005, Nature.

[90]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[91]  J. Hoffman,et al.  The incidence of congenital heart disease. , 2002, Journal of the American College of Cardiology.

[92]  Jeffrey Robbins,et al.  A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy , 1998, Cell.