A 48-pixel array of single photon avalanche diodes for multispot single molecule analysis

In this paper we present an array of 48 Single Photon Avalanche Diodes (SPADs) specifically designed for multispot Single Molecule Analysis. The detectors have been arranged in a 12x4 square geometry with a pitch-to-diameter ratio of ten in order to minimize the collection of the light from non-conjugated excitation spots. In order to explore the tradeoffs between the detectors’ performance and the optical coupling with the experimental setup, SPADs with an active diameter of 25 and of 50μm have been manufactured. The use of a custom technology, specifically designed for the fabrication of the detectors, allowed us to combine a high photon detection efficiency (peak close to 50% at a wavelength of 550nm) with a low dark count rate compatible with true single molecule detection. In order to allow easy integration into the optical setup for parallel single-molecule analysis, the SPAD array has been incorporated in a compact module containing all the electronics needed for a proper operation of the detectors.

[1]  Shimon Weiss,et al.  Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. , 2006, The journal of physical chemistry. B.

[2]  Peter Hinterdorfer,et al.  Handbook of single-molecule biophysics , 2009 .

[3]  A Ingargiola,et al.  Parallel multispot smFRET analysis using an 8-pixel SPAD array , 2012, BiOS.

[4]  Angelo Gulinatti,et al.  Planar silicon SPADs with 200-μm diameter and 35-ps photon timing resolution , 2006, SPIE Optics East.

[5]  Shimon Weiss,et al.  Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy , 2000, Nature Structural Biology.

[6]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[7]  Antonino Ingargiola,et al.  Optical crosstalk in single photon avalanche diode arrays: a new complete model. , 2008, Optics express.

[8]  S. Weiss,et al.  Detectors for single-molecule fluorescence imaging and spectroscopy , 2007, Journal of modern optics.

[9]  A Volkmer,et al.  Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. , 2001, Journal of biotechnology.

[10]  Angelo Gulinatti,et al.  High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array , 2010, Biomedical optics express.

[11]  Francesco Panzeri,et al.  Single-molecule FRET experiments with a red-enhanced custom technology SPAD , 2013, Photonics West - Biomedical Optics.

[12]  S. Cova,et al.  Progress in Silicon Single-Photon Avalanche Diodes , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  W. Moerner,et al.  Illuminating single molecules in condensed matter. , 1999, Science.

[14]  Franco Zappa,et al.  Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD , 2011, BiOS.

[15]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Paul R. Selvin,et al.  Single-molecule techniques : a laboratory manual , 2008 .

[17]  M. Ghioni,et al.  Large-area avalanche diodes for picosecond time-correlated photon counting , 2005, Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005..

[18]  Angelo Gulinatti,et al.  Silicon single-photon avalanche diodes for high-performance parallel photon timing , 2012, Defense, Security, and Sensing.

[19]  A. Cheng,et al.  Single-molecule detection and spectroscopy in point-like geometries ( a ) Point-like excitation and detection , 2012 .

[20]  M. Ghioni,et al.  Progress in Quenching Circuits for Single Photon Avalanche Diodes , 2010, IEEE Transactions on Nuclear Science.

[21]  Francesco Panzeri,et al.  Planar technologies for SPAD arrays with improved performances , 2012, OPTO.

[22]  Edoardo Charbon,et al.  A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter , 2011, 2011 IEEE International Solid-State Circuits Conference.

[23]  Angelo Gulinatti,et al.  Large-area low-jitter silicon single photon avalanche diodes , 2008, SPIE OPTO.

[24]  X. Xie,et al.  Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer , 2003, Science.

[25]  P. Wahl,et al.  Energy Migration and Fluorescence Depolarization: Structural Studies of Ethidium Bromide-Nucleic Acid Complexes , 1983 .

[26]  A. Tosi,et al.  Two-Dimensional SPAD Imaging Camera for Photon Counting , 2010, IEEE Photonics Journal.

[27]  S. Cova,et al.  New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration , 2012 .

[28]  Angelo Gulinatti,et al.  Operation of silicon single photon avalanche diodes at cryogenic temperature. , 2007, The Review of scientific instruments.

[29]  S. Cova,et al.  A process and deep level evaluation tool: afterpulsing in avalanche junctions , 2003, ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003..

[30]  X. Xie,et al.  Optical studies of single molecules at room temperature. , 1998, Annual review of physical chemistry.

[31]  A. Lacaita,et al.  Avalanche photodiodes and quenching circuits for single-photon detection. , 1996, Applied optics.

[32]  S. Weiss,et al.  Single-molecule fluorescence studies of protein folding and conformational dynamics. , 2006, Chemical reviews.

[33]  Toshio Yanagida,et al.  Single molecule dynamics in life science , 2008 .