Brazil On Structural Optimization Using Constraint Aggregation

1. Abstract This paper explores different methods of constraint aggregation for numerical optimization. The main motive is the aggregation of stress constraints in structural weight minimization problems in order to reduce the cost of adjoint sensitivity calculations and hence the overall cost of the optimization. We analyze existing approaches such as considering all constraints individually, taking the maximum of the constraints and using the Kreisselmeier–Steinhauser function. A new adaptive approach based on the Kreisselmeier–Steinhauser function is proposed and is shown to significantly increase the accuracy of the results when a large number of constraints is active at the optimum.

[1]  G. Kreisselmeier,et al.  SYSTEMATIC CONTROL DESIGN BY OPTIMIZING A VECTOR PERFORMANCE INDEX , 1979 .

[2]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[3]  D. T. Nguyen,et al.  Generalized exponential penalty function for nonlinear programming , 1994 .

[4]  T Haftka Raphael,et al.  Multidisciplinary aerospace design optimization: survey of recent developments , 1996 .

[5]  W. K. Anderson,et al.  Aerodynamic Design on Unstructured Grids for Turbulent , 1997 .

[6]  R. Haftka,et al.  Multidisciplinary aerospace design optimization: survey of recent developments , 1997 .

[7]  Wu K. Chauncey,et al.  Sensitivity of Lumped Constraints Using the Adjoint Method , 1999 .

[8]  Lorenz T. Biegler,et al.  New strategies for flexibility analysis and design under uncertainty , 2000 .

[9]  J. L. Walsh,et al.  Efficient structural optimization for multiple load cases using adjoint sensitivities , 2001 .

[10]  Joaquim R. R. A. Martins,et al.  High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet , 2002 .

[11]  Michael A. Saunders,et al.  USER’S GUIDE FOR SNOPT 5.3: A FORTRAN PACKAGE FOR LARGE-SCALE NONLINEAR PROGRAMMING , 2002 .

[12]  Lorenz T. Biegler,et al.  Optimal process design with model parameter uncertainty and process variability , 2003 .

[13]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[14]  Daniel P. Schrage,et al.  An approach to tiltrotor wing aeroservoelastic optimization through increased productivity , 2004 .

[15]  Joaquim R. R. A. Martins,et al.  pyMDO: A framework for high-fidelity multi-disciplinary optimization , 2004 .

[16]  J. Alonso,et al.  A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design , 2005 .