A Multisensor Comparison of Experimental Oil Spills in Polarimetric SAR for High Wind Conditions

In this paper, we present the experimental setup and data collection during the Norwegian Radar oil Spill Experiment 2015, followed by a comparison of a subset of the multisensory synthetic aperture radar (SAR) imagery collected during the experiment. Multipolarization SAR data acquired by Radarsat-2, TerraSAR-X, and the uninhabited aerial vehicle synthetic aperture radar (UAVSAR) less than 6 min apart are investigated and compared. All three sensors detect the four slicks of varying physiochemical composition under challenging conditions posed by small slicks in high wind conditions of $\sim$12 m/s. The detectability is best in TerraSAR-X and UAVSAR. The high wind allows for large signal-to-noise ratios over the slicks, even in the satellite data and in cross-polarization channels. Although detection is possible, discrimination between slick types, using multipolarization parameters previously found useful for this purpose, is not possible under these conditions for the acquisitions in the instance studied.

[1]  Maurizio Migliaccio,et al.  On the co‐polarized phase difference for oil spill observation , 2009 .

[2]  Maurizio Migliaccio,et al.  Dual-Polarized TerraSAR-X Data for Oil-Spill Observation , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Fabio Del Frate,et al.  Multi-frequency and polarimetric quantitative analysis of the Gulf of Mexico oil spill event comparing different SAR systems , 2016 .

[4]  Paris W. Vachon,et al.  Ocean Surface Waves and Spectra , 2004 .

[5]  Maurizio Migliaccio,et al.  SAR polarimetry for sea oil slick observation , 2015 .

[6]  William Perrie,et al.  Mapping sea surface oil slicks using RADARSAT‐2 quad‐polarization SAR image , 2011 .

[7]  Maurizio Migliaccio,et al.  SAR Polarimetry to Observe Oil Spills , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Helko Breit,et al.  TerraSAR-X Ground Segment Basic Product Specification Document , 2008 .

[9]  Masanobu Shimada,et al.  The PALSAR Polarimetric Mode for Sea Oil Slick Observation , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Duk-jin Kim,et al.  Application of TerraSAR-X Data for Emergent Oil-Spill Monitoring , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Benjamin Holt,et al.  Polarimetric Analysis of Backscatter From the Deepwater Horizon Oil Spill Using L-Band Synthetic Aperture Radar , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Paul A Hsieh,et al.  Review of flow rate estimates of the Deepwater Horizon oil spill , 2011, Proceedings of the National Academy of Sciences.

[13]  Wang Jun,et al.  Oil spill detection from polarimetric SAR image , 2010, IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS.

[14]  J. Nicolas,et al.  Introduction to Second Kind Statistics: Application of Log-Moments and Log-Cumulants to the Analysis of Radar Image Distributions , 2011 .

[15]  Richard K. Moore,et al.  Microwave Remote Sensing , 1999 .

[16]  G. Valenzuela Theories for the interaction of electromagnetic and oceanic waves — A review , 1978 .

[17]  Torbjørn Eltoft,et al.  Comparing Near-Coincident C- and X-Band SAR Acquisitions of Marine Oil Spills , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Bruce Chapman,et al.  UAVSAR Polarimetric Calibration , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Torbjørn Eltoft,et al.  Cross-Correlation Between Polarization Channels in SAR Imagery Over Oceanographic Features , 2016, IEEE Geoscience and Remote Sensing Letters.

[20]  Torbjørn Eltoft,et al.  Characterization of Marine Surface Slicks by Radarsat-2 Multipolarization Features , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Leo J. Fritschen,et al.  Wind Speed and Direction , 1979 .

[22]  Jean-Marie Nicolas 1 - Introduction aux Statistiques de deuxième espèce : applications des Logs-moments et des Logs-cumulants à l'analyse des lois d'images radar , 2002 .

[23]  Carl E. Brown,et al.  Marine added-value products using RADARSAT-2 fine quad-polarization , 2011 .

[24]  J. Fortuny-Guasch,et al.  Improved Oil Slick Detection and Classification with Polarimetric SAR , 2003 .

[25]  Yang Liu,et al.  An experiment for oil spill recognition using RADARSAT-2 image , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[26]  Xiaofeng Li,et al.  A Multifrequency Polarimetric SAR Processing Chain to Observe Oil Fields in the Gulf of Mexico , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Brent Minchew,et al.  Determining the mixing of oil and sea water using polarimetric synthetic aperture radar , 2012 .

[28]  Heinrich Hühnerfuss,et al.  Radar signatures of marine mineral oil spills measured by an airborne multi-frequency radar , 1998 .

[29]  J. S. Lee,et al.  Mapping ocean surface features using biogenic slick-fields and SAR polarimetric decomposition techniques , 2006 .

[30]  Kazuo Ouchi,et al.  An analysis of the radar backscatter fromoil-covered sea surfaces usingmomentmethod andMonte-Carlo simulation: preliminary results , 2013, Acta Oceanologica Sinica.

[31]  Bertrand Chapron,et al.  On Dual Co-Polarized SAR Measurements of the Ocean Surface , 2013, IEEE Geoscience and Remote Sensing Letters.

[32]  Werner Alpers,et al.  Chapter 11 . Oils and Surfactants , 2004 .

[33]  R. Garello,et al.  Operational oil-slick characterization by SAR imagery and synergistic data , 2005, IEEE Journal of Oceanic Engineering.

[34]  Torbjørn Eltoft,et al.  Application of the Matrix-Variate Mellin Transform to Analysis of Polarimetric Radar Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Camilla Brekke,et al.  Characterization of Low-Backscatter Ocean Features in Dual-Copolarization SAR Using Log-Cumulants , 2015, IEEE Geoscience and Remote Sensing Letters.

[36]  Heinrich Hühnerfuss,et al.  Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR‐C/X‐SAR , 1998 .

[37]  Mervin F. Fingas,et al.  Review of oil spill remote sensing , 1997 .

[38]  Anne H. Schistad Solberg,et al.  Remote Sensing of Ocean Oil-Spill Pollution , 2012, Proceedings of the IEEE.

[39]  Sergios Theodoridis,et al.  Pattern Recognition , 1998, IEEE Trans. Neural Networks.

[40]  秦明,et al.  Wind-speed and wind-direction sensor , 2012 .

[41]  Maurizio Migliaccio,et al.  On the Mueller Scattering Matrix for SAR Sea Oil Slick Observation , 2008, IEEE Geoscience and Remote Sensing Letters.

[42]  Nicolas Pinel,et al.  Two-Dimensional Radar Backscattering Modeling of Oil Slicks at Sea Based on the Model of Local Balance: Validation of Two Asymptotic Techniques for Thick Films , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[43]  William J. Emery,et al.  The Gulf of Mexico oil rig accident: analysis by different SAR satellite images , 2011, Remote Sensing.

[44]  S K Sasamal,et al.  Oil spill experiment using airborne DLR ESAR off the coast of Diu, India. , 2015, Marine pollution bulletin.

[45]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[46]  Heinrich Hühnerfuss,et al.  Radar signatures of oil films floating on the sea surface and the Marangoni effect , 1988 .

[47]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .