Identification of finite dimensional models of infinite dimensional dynamical systems

The identification of finite dimensional discrete-time models of deterministic linear and nonlinear infinite dimensional systems from pointwise observations is investigated. The input and output observations are used to construct finite dimensional approximations of the solution and the forcing function which are expanded in terms of a finite element basis. An algorithm to determine a minimal basis to approximate the data is introduced. Subsequently, the resulting coordinate vectors are used to identify a finite dimensional discrete-time model. Theoretical results concerning the existence, stability and convergence of the finite dimensional representation are established. Numerical results involving identification of finite dimensional models for both linear and nonlinear infinite dimensional systems are presented.

[1]  Karl Kunisch,et al.  Distributed Parameter Systems , 1985 .

[2]  R. FitzHugh Mathematical models of threshold phenomena in the nerve membrane , 1955 .

[3]  S. Mitter,et al.  Representation and Control of Infinite Dimensional Systems , 1992 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  Arch W. Naylor,et al.  Linear Operator Theory in Engineering and Science , 1971 .

[6]  Stephen A. Billings,et al.  FINITE ELEMENT GALERKIN MODELS AND IDENTIFIED FINITE ELEMENT MODELS - A COMPARATIVE STUDY. , 2002 .

[7]  Sheng Chen,et al.  Non-linear systems identification using radial basis functions , 1990 .

[8]  S. Billings,et al.  DISCRETE WAVELET MODELS FOR IDENTIFICATION AND QUALITATIVE ANALYSIS OF CHAOTIC SYSTEMS , 1999 .

[9]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[10]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[11]  Carlos S. Kubrusly,et al.  Distributed parameter system indentification A survey , 1977 .

[12]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[13]  Sheng Chen,et al.  Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .

[14]  R. Temam,et al.  Nonlinear Galerkin methods: The finite elements case , 1990 .

[15]  Sheng Chen,et al.  Identification of non-linear rational systems using a prediction-error estimation algorithm , 1989 .

[16]  Daniel Coca,et al.  Non-linear system identification using wavelet multiresolution models , 2001 .

[17]  S. Yoshizawa,et al.  Bistable Transmission Lines , 1965 .

[18]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[19]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[20]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[21]  Karl Kunisch,et al.  Estimation Techniques for Distributed Parameter Systems , 1989 .

[22]  Sheng Chen,et al.  Representations of non-linear systems: the NARMAX model , 1989 .

[23]  J. Craggs Applied Mathematical Sciences , 1973 .