Solution structure of zinc-seamed C-alkylpyrogallol[4]arene dimeric nanocapsules

The structural stability and solution geometry of zinc-seamed-C-propylpyrogallol[4]arene dimers has been studied in solution using in situ neutron scattering and 2D-DOSY NMR methods. In comparison with the structures of the analogous copper-/nickel-seamed dimeric entities, the spherical geometry of the PgC3Zn species (R = 9.4 Å; diffusion coefficient = 1.05 × 10−10 m2 s−1) is larger due to the presence of ligands at the periphery in solution. This enhanced radius in solution due to ligation is also consistent with the findings of model molecular dynamics simulations of the zinc-seamed dimers.

[1]  J. Atwood,et al.  Investigating structural alterations in pyrogallol[4]arene-pyrene nanotubular frameworks. , 2012, Small.

[2]  J. Atwood,et al.  Ferrocene species included within a pyrogallol[4]arene tube. , 2012, Chemistry.

[3]  J. Atwood,et al.  Solution-phase structures of gallium-containing pyrogallol[4]arene scaffolds. , 2012, Angewandte Chemie.

[4]  J. Atwood,et al.  Controlling the self-assembly of metal-seamed organic nanocapsules. , 2012, Angewandte Chemie.

[5]  Michael Gaus,et al.  DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). , 2011, Journal of chemical theory and computation.

[6]  J. Atwood,et al.  Solution structure of copper-seamed C-alkylpyrogallol[4]arene nanocapsules with varying chain lengths. , 2011, Chemical communications.

[7]  J. Atwood,et al.  Exploring the ellipsoidal and core-shell geometries of copper-seamed C-alkylpyrogallol[4]arene nanocapsules in solution. , 2011, Journal of the American Chemical Society.

[8]  J. Atwood,et al.  Ferrocene as a Hydrophobic Templating Agent with Pyrogallol[4]arenes , 2011 .

[9]  Y. Cohen,et al.  Recent advances in hydrogen-bonded hexameric encapsulation complexes. , 2011, Chemical communications.

[10]  J. Rebek,et al.  Control of nanospaces with molecular devices , 2011, Supramolecular chemistry.

[11]  J. Atwood,et al.  Mixed metal-organic nanocapsules , 2010 .

[12]  Nicholas P. Power,et al.  Dimeric nanocapsule induces conformational change. , 2010, Chemical communications.

[13]  Nicholas P. Power,et al.  Metallo-supramolecular capsules , 2008 .

[14]  Y. Cohen,et al.  Hydrogen-Bonded Hexameric Capsules of Resorcin[4]arene, Pyrogallol[4]arene and Octahydroxypyridine[4]arene are Abundant Structures in Organic Solvents: A View from Diffusion NMR , 2008 .

[15]  Nicholas P. Power,et al.  Guest and ligand behavior in zinc-seamed pyrogallol[4]arene molecular capsules. , 2007, Angewandte Chemie.

[16]  Y. Cohen,et al.  Octahydroxypyridine[4]arene self-assembles spontaneously to form hexameric capsules and dimeric aggregates. , 2007, Chemistry.

[17]  Nicholas P. Power,et al.  Robust and stable pyrogallol[4]arene molecular capsules facilitated via an octanuclear zinc coordination belt , 2007 .

[18]  Steven R. Kline,et al.  Reduction and analysis of SANS and USANS data using IGOR Pro , 2006 .

[19]  J. Rebek Simultaneous encapsulation: molecules held at close range. , 2005, Angewandte Chemie.

[20]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[21]  S. Bella Second-order nonlinear optical properties of transition metal complexes , 2001 .

[22]  J. Atwood,et al.  Metal sulfonatocalix[4,5]arene complexes: bi-layers, capsules, spheres, tubular arrays and beyond , 2001 .

[23]  William J. Orts,et al.  The 30 m Small-Angle Neutron Scattering Instruments at the National Institute of Standards and Technology , 1998 .

[24]  Sow-Hsin Chen,et al.  Analysis of small angle neutron scattering spectra from polydisperse interacting colloids , 1983 .