Voronoi diagrams of moving points

Consider a set of n points in d-dimensional Euclidean space, d > 2, each of which is continuously moving along a given individual trajectory. As the points move, their Voronoi diagram changes continuously, but at certain critical instants in time, topological events occur that cause a change in the Voronoi diagram. In this paper, we present a method of maintaining the Voronoi diagram over time, at a cost of O(logn) per event, while showing that the number of topological events has an upper bound of 0(nXB(n)), where X,{n) is the (nearly linear) maximum length of a (n,s)-DavenportSchinzel sequence, and s is a constant depending on the motions of the point sites. In addition, we show that if only k points are moving (while leaving the other n — k points fixed), there is an upper bound of 0(kn~\3(n) + (n — fc) A3(fc)) on the number of topological events.

[1]  Micha Sharir,et al.  Voronoi diagrams of lines in 3-space under polyhedral convex distance functions , 1995, SODA '95.

[2]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[3]  Thomas Roos Maintaining Voronoi diagrams in parallel , 1994, 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences.

[4]  Thomas Roos,et al.  Voronoi Diagrams of Moving Points in Higher Dimensional Spaces , 1992, SWAT.

[5]  Hugo Hadwiger,et al.  Kombinatorische Geometrie in der Ebene , 1959 .

[6]  Micha Sharir,et al.  Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 2015, J. Comb. Theory, Ser. A.

[7]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[8]  Richard C. T. Lee,et al.  Voronoi diagrams of moving points in the plane , 1990, Int. J. Comput. Geom. Appl..

[9]  M. Atallah Some dynamic computational geometry problems , 1985 .

[10]  I. G. Gowda,et al.  Dynamic Voronoi diagrams , 1983, IEEE Trans. Inf. Theory.

[11]  Thomas Roos,et al.  Voronoi Diagrams over Dynamic Scenes , 1993, Discret. Appl. Math..

[12]  V. Klee On the complexity ofd- dimensional Voronoi diagrams , 1979 .

[13]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[14]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[15]  Thomas Roos,et al.  Tighter Bounds on Voronoi Diagrams of Moving Points , 1993, CCCG.

[16]  L. Paul Chew,et al.  Near-quadratic Bounds for the L1Voronoi Diagram of Moving Points , 1993, Comput. Geom..

[17]  Leonidas J. Guibas,et al.  Randomized Incremental Construction of Delaunay and Voronoi Diagrams , 1990, ICALP.

[18]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[19]  Leonidas J. Guibas,et al.  Voronoi Diagrams of Moving Points in the Plane , 1991, WG.

[20]  Joseph O'Rourke Computational geometry column 12 , 1991, Int. J. Comput. Geom. Appl..

[21]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.

[22]  Takeshi Tokuyama,et al.  On minimum and maximum spanning trees of linearly moving points , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[23]  Kenneth L. Clarkson,et al.  Safe and effective determinant evaluation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.