Voronoi diagrams of moving points
暂无分享,去创建一个
[1] Micha Sharir,et al. Voronoi diagrams of lines in 3-space under polyhedral convex distance functions , 1995, SODA '95.
[2] Bernard Chazelle,et al. An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..
[3] Thomas Roos. Maintaining Voronoi diagrams in parallel , 1994, 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences.
[4] Thomas Roos,et al. Voronoi Diagrams of Moving Points in Higher Dimensional Spaces , 1992, SWAT.
[5] Hugo Hadwiger,et al. Kombinatorische Geometrie in der Ebene , 1959 .
[6] Micha Sharir,et al. Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 2015, J. Comb. Theory, Ser. A.
[7] Leonidas J. Guibas,et al. A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..
[8] Richard C. T. Lee,et al. Voronoi diagrams of moving points in the plane , 1990, Int. J. Comput. Geom. Appl..
[9] M. Atallah. Some dynamic computational geometry problems , 1985 .
[10] I. G. Gowda,et al. Dynamic Voronoi diagrams , 1983, IEEE Trans. Inf. Theory.
[11] Thomas Roos,et al. Voronoi Diagrams over Dynamic Scenes , 1993, Discret. Appl. Math..
[12] V. Klee. On the complexity ofd- dimensional Voronoi diagrams , 1979 .
[13] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[14] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.
[15] Thomas Roos,et al. Tighter Bounds on Voronoi Diagrams of Moving Points , 1993, CCCG.
[16] L. Paul Chew,et al. Near-quadratic Bounds for the L1Voronoi Diagram of Moving Points , 1993, Comput. Geom..
[17] Leonidas J. Guibas,et al. Randomized Incremental Construction of Delaunay and Voronoi Diagrams , 1990, ICALP.
[18] Kevin Q. Brown,et al. Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..
[19] Leonidas J. Guibas,et al. Voronoi Diagrams of Moving Points in the Plane , 1991, WG.
[20] Joseph O'Rourke. Computational geometry column 12 , 1991, Int. J. Comput. Geom. Appl..
[21] M. Iri,et al. Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.
[22] Takeshi Tokuyama,et al. On minimum and maximum spanning trees of linearly moving points , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[23] Kenneth L. Clarkson,et al. Safe and effective determinant evaluation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.