Evolution in action: adaptation and incipient sympatric speciation with gene flow across life at “Evolution Canyon”, Israel

Various major evolutionary problems are still open, controversial or unsettled. These include even the basic evolutionary processes of adaptation and speciation. The “Evolution Canyon” model is a microscale natural laboratory that can highlight some of the basic problems requiring clarification (Nevo list of “Evolution Canyon” publications at http://evolution.haifa.ac.il). This is especially true if an interdisciplinary approach is practiced including ecological functional genomics, transcriptomics, proteomics, metabolomics and phenomics. Here I overview and reanalyze the incipient sympatric adaptive ecological speciation of five model organisms at “Evolution Canyon”, across life: the soil bacterium, Bacillus simplex; wild barley, the progenitor of cultivated barley, Hordeum spontaneum; the tiny beetle Oryzaephilus surinamensis; the cosmopolitan fruit-fly, Drosophila melanogaster, and the Africa-originated spiny mouse, Acomys cahirinus. All five models of organisms display evolution in action of microclim...

[1]  E. Nevo Evolution of wild barley at Evolution Canyon: adaptation, speciation, pre-agricultural collection, and barley improvement , 2015 .

[2]  A. Belyayev Bursts of transposable elements as an evolutionary driving force , 2014, Journal of evolutionary biology.

[3]  Ning Wang,et al.  Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley , 2014, Proceedings of the National Academy of Sciences.

[4]  Young Bun Kim,et al.  Divergence of Drosophila melanogaster repeatomes in response to a sharp microclimate contrast in Evolution Canyon, Israel , 2014, Proceedings of the National Academy of Sciences.

[5]  E. Nevo,et al.  Adaptive evolution of duplicated hsp17 genes in wild barley from microclimatically divergent sites of Israel. , 2014, Genetics and molecular research : GMR.

[6]  E. Nevo,et al.  Sympatric incipient speciation of spiny mice Acomys at “Evolution Canyon,” Israel , 2014, Proceedings of the National Academy of Sciences.

[7]  Young Bun Kim,et al.  Genome differentiation of Drosophila melanogaster from a microclimate contrast in Evolution Canyon, Israel , 2013, Proceedings of the National Academy of Sciences.

[8]  Tao Zhang,et al.  Transcriptome Comparative Profiling of Barley eibi1 Mutant Reveals Pleiotropic Effects of HvABCG31 Gene on Cuticle Biogenesis and Stress Responsive Pathways , 2013, International journal of molecular sciences.

[9]  E. Nevo,et al.  Increases in Both Acute and Chronic Temperature Potentiate Tocotrienol Concentrations in Wild Barley at ‘Evolution Canyon’ , 2013, Chemistry & biodiversity.

[10]  E. Nevo,et al.  GENETIC AND PHYSIOLOGICAL ADAPTATIONS OF THE PROSOBRANCH LANDSNAIL POMATIAS OLIVIERI TO MICROCLIMATIC STRESSES ON MOUNT CARMEL, ISRAEL , 2013 .

[11]  Y. Hadid,et al.  Local genetic population divergence in a saw-toothed grain beetle, Oryzaephilus surinamensis (L.) (Coleoptera, Cucujidae) , 2013 .

[12]  E. Nevo,et al.  Possible incipient sympatric ecological speciation in blind mole rats (Spalax) , 2013, Proceedings of the National Academy of Sciences.

[13]  M. Burke How does adaptation sweep through the genome? Insights from long-term selection experiments , 2012, Proceedings of the Royal Society B: Biological Sciences.

[14]  E. Nevo,et al.  Tibet is one of the centers of domestication of cultivated barley , 2012, Proceedings of the National Academy of Sciences.

[15]  E. Nevo,et al.  Population-genetic analysis of HvABCG31 promoter sequence in wild barley (Hordeum vulgare ssp. spontaneum) , 2012, BMC Evolutionary Biology.

[16]  J. Feder,et al.  ON THE SCENT OF STANDING VARIATION FOR SPECIATION: BEHAVIORAL EVIDENCE FOR NATIVE SYMPATRIC HOST RACES OF RHAGOLETIS POMONELLA (DIPTERA: TEPHRITIDAE) IN THE SOUTHERN UNITED STATES , 2012, Evolution; international journal of organic evolution.

[17]  Mia T Levine,et al.  Hybrid Sterility over Tens of Meters Between Ecotypes Adapted to Serpentine and Non-Serpentine Soils , 2012, Evolutionary Biology.

[18]  J. Feder,et al.  A field test for host fruit odour discrimination and avoidance behaviour for Rhagoletis pomonella flies in the western United States , 2012, Journal of evolutionary biology.

[19]  E. Nevo,et al.  Evolution of wild cereals during 28 years of global warming in Israel , 2012, Proceedings of the National Academy of Sciences.

[20]  E. Nevo “Evolution Canyon,” a potential microscale monitor of global warming across life , 2012, Proceedings of the National Academy of Sciences.

[21]  Tao Zhang,et al.  Adaptive microclimatic evolution of the dehydrin 6 gene in wild barley at “Evolution Canyon”, Israel , 2011, Genetica.

[22]  E. Nevo Evolution Under Environmental Stress at Macro- and Microscales , 2011, Genome biology and evolution.

[23]  E. Nevo,et al.  Differential expression of small heat shock protein genes Hsp23 and Hsp40, and heat shock gene Hsr-omega in fruit flies (Drosophila melanogaster) along a microclimatic gradient. , 2011, The Journal of heredity.

[24]  E. Nevo,et al.  An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice , 2011, Proceedings of the National Academy of Sciences.

[25]  James A. Shapiro,et al.  Evolution: A View from the 21st Century , 2011 .

[26]  Eviatar Nevo,et al.  Bacterial Distribution in the Rhizosphere of Wild Barley under Contrasting Microclimates , 2011, PloS one.

[27]  E. Nevo,et al.  Wild Barley—Harbinger of biodiversity , 2010 .

[28]  Michael S. Taylor,et al.  Widespread genomic divergence during sympatric speciation , 2010, Proceedings of the National Academy of Sciences.

[29]  E. Nevo,et al.  Spiny Mice Modulate Eumelanin to Pheomelanin Ratio to Achieve Cryptic Coloration in “Evolution Canyon,” Israel , 2010, PloS one.

[30]  E. Nevo,et al.  Peculiarities of the courtship song in the Drosophila melanogaster populations adapted to gradient of microecological conditions , 2009, Journal of Evolutionary Biochemistry and Physiology.

[31]  Eviatar Nevo,et al.  Evolution in action across life at “Evolution Canyons”, Israel , 2009 .

[32]  S. Timmusk,et al.  Detection and quantification of Paenibacillus polymyxa in the rhizosphere of wild barley (Hordeum spontaneum) with real‐time PCR , 2009, Journal of applied microbiology.

[33]  E. Nevo,et al.  Genetic diversity and stress of Ricotia lunaria in "Evolution Canyon," Israel. , 2009, The Journal of heredity.

[34]  E. Nevo,et al.  Adaptive Response to DNA-Damaging Agents in Natural Saccharomyces cerevisiae Populations from “Evolution Canyon”, Mt. Carmel, Israel , 2009, PloS one.

[35]  Tao Zhang,et al.  Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, Hordeum spontaneum, at ‘Evolution Canyon’, Mount Carmel, Israel , 2009, Molecular ecology.

[36]  Tomáš Pavlíček,et al.  Scorpion Biodiversity and Interslope Divergence at “Evolution Canyon”, Lower Nahal Oren Microsite, Mt. Carmel, Israel , 2009, PloS one.

[37]  H. A. Orr,et al.  A Single Gene Causes Both Male Sterility and Segregation Distortion in Drosophila Hybrids , 2009, Science.

[38]  Olli Saarela,et al.  Gender Differences in Genetic Risk Profiles for Cardiovascular Disease , 2008, PloS one.

[39]  Eviatar Nevo,et al.  Adaptive Melanin Response of the Soil Fungus Aspergillus niger to UV Radiation Stress at “Evolution Canyon”, Mount Carmel, Israel , 2008, PloS one.

[40]  E. Nevo,et al.  Drosophila at the "Evolution Canyon" Microsite, MT. Carmel, Israel: Selection Overrules Migration , 2008 .

[41]  D. M. Ward,et al.  Identifying the fundamental units of bacterial diversity: A paradigm shift to incorporate ecology into bacterial systematics , 2008, Proceedings of the National Academy of Sciences.

[42]  P. Šmarda,et al.  Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. , 2008, Annals of botany.

[43]  E. Nevo,et al.  Distribution of abundance and genome size variability in the grain beetle Oryzaephilus surinamensis (Linnaeus, 1758) (Coleoptera: Silvanidae) , 2008 .

[44]  E. Nevo,et al.  Genome size microscale divergence of Cyclamen persicum in Evolution Canyon, Israel , 2008, Central European Journal of Biology.

[45]  E. Nevo,et al.  Patterns of thermal adaptation of Bacillus simplex to the microclimatically contrasting slopes of 'Evolution Canyons' I and II, Israel. , 2007, Environmental microbiology.

[46]  E. Nevo,et al.  Adaptive climatic molecular evolution in wild barley at the Isa defense locus , 2007, Proceedings of the National Academy of Sciences.

[47]  E. Nevo,et al.  Genome size variation of Lotus peregrinus at evolution canyon I microsite, Lower Nahal Oren, Mt. Carmel, Israel , 2007 .

[48]  E. Nevo,et al.  Drosophila flies in “Evolution Canyon” as a model for incipient sympatric speciation , 2006, Proceedings of the National Academy of Sciences.

[49]  D. Krizanc,et al.  Identifying the Fundamental Units of Diversity Among Bacillus Isolates From "Evolution Canyon" III , 2006 .

[50]  E. Nevo,et al.  On The Necessity to Study Natural Bacterial Populations-The Model of Bacillus Simplex From "Evolution Canyons" I and II, Israel , 2006 .

[51]  E. Nevo,et al.  Enigmatic Flies: Is Drosophila in the "Evolution Canyon" A Model for Incipient Sympatric speciation? , 2006 .

[52]  Eviatar Nevo,et al.  "Evolution Canyon": A Microcosm of Life's Evolution Focusing on Adaptation and Speciation , 2006 .

[53]  D. Barash,et al.  Adaptive mutations in RNA-based regulatory mechanisms Computational and experimental investigations , 2006 .

[54]  E. Nevo,et al.  Ecological–genetic feedback in DNA repair in wild barley, Hordeum spontaneum , 2006, Genetica.

[55]  E. Nevo,et al.  Assortative Mating in Drosophila Adapted to a Microsite Ecological Gradient , 2005, Behavior genetics.

[56]  P. Parsons Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency , 2005, Biological reviews of the Cambridge Philosophical Society.

[57]  E. Nevo,et al.  Adaptation and incipient sympatric speciation of Bacillus simplex under microclimatic contrast at "Evolution Canyons" I and II, Israel. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  E. Nevo,et al.  Sequence polymorphism of candidate behavioural genes in Drosophila melanogaster flies from ‘Evolution canyon’ , 2005, Molecular ecology.

[59]  E. Nevo,et al.  Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in ‘Evolution Canyon’, Israel , 2005 .

[60]  H. Rundle,et al.  Ecological speciation: Ecological speciation , 2005 .

[61]  A. Hendry,et al.  HOW MUCH OF THE VARIATION IN ADAPTIVE DIVERGENCE CAN BE EXPLAINED BY GENE FLOW? AN EVALUATION USING LAKE‐STREAM STICKLEBACK PAIRS , 2004, Evolution; international journal of organic evolution.

[62]  E. Nevo,et al.  DNA repair efficiency and thermotolerance in Drosophila melanogaster from "Evolution Canyon". , 2004, Mutagenesis.

[63]  Ernst Mayr,et al.  Book Reviews-What Makes Biology Unique?: Considerations on the Autonomy of a Scientific Discipline , 2004 .

[64]  N. Barton Fitness Landscapes and the Origin of Species , 2004 .

[65]  E. Nevo,et al.  Microsatellites within genes: structure, function, and evolution. , 2004, Molecular biology and evolution.

[66]  E. Nevo,et al.  Microgeographic genome size differentiation of the carob tree, Ceratonia siliqua, at 'Evolution Canyon', Israel. , 2004, Annals of botany.

[67]  F. Jiggins Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. , 2003, Genetics.

[68]  Tomáš Pavlíček,et al.  Microclimatic interslope differences underlying biodiversity contrasts in "Evolution Canyon", Mt. Carmel, Israel , 2003 .

[69]  E. Nevo,et al.  Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review , 2002, Molecular ecology.

[70]  E Nevo,et al.  Evolution of genome–phenome diversity under environmental stress , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[71]  N. A. Belova,et al.  Edaphic interslope and valley bottom differences at “Evolution Canyon”, Lower Nahal Oren, Mount Carmel, Israel , 1998 .

[72]  Eviatar Nevo,et al.  Molecular evolution and ecological stress at global, regional and local scales: The Israeli perspective , 1998 .

[73]  Charles Darwin,et al.  The Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. New York (The Modern Library) 1998. , 1998 .

[74]  E. Nevo,et al.  Genotypic and phenotypic divergence of rodents ( Acomys cahirinus and Apodemus mystacinus ) at "Evolution Canyon": Micro- and macroscale parallelism , 1998 .

[75]  A. Korol,et al.  A complex adaptive syndrome in Drosophila caused by microclimatic contrasts , 1998, Heredity.

[76]  E. Nevo,et al.  Population genetic response to microsite ecological stress in wild barley, Hordeum spontaneum , 1997 .

[77]  E. Nevo Evolution in action across phylogeny caused by microclimatic stresses at "Evolution Canyon". , 1997, Theoretical population biology.

[78]  E. Nevo,et al.  Natural selection causes microscale allozyme diversity in wild barley and a lichen at ‘Evolution Canyon’, Mt. Carmel, Israel , 1997, Heredity.

[79]  Eviatar Nevo,et al.  Asian, African and European biota meet at ‘Evolution Canyon’ Israel: local tests of global biodiversity and genetic diversity patterns , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[80]  A. Hoffmann,et al.  Evolutionary Genetics and Environmental Stress , 1991 .

[81]  J. Coyne,et al.  Long-Distance Migration of Drosophila. 3. Dispersal of D. melanogaster Alleles from a Maryland Orchard , 1987, The American Naturalist.

[82]  K. Kowalski,et al.  Succession of Rodent Faunas during the Upper Pleistocene of Israel , 1969 .

[83]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[84]  L. V. Valen,et al.  MORPHOLOGICAL VARIATION AND WIDTH OF ECOLOGICAL NICHE , 1965 .