The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes

This paper introduces a new data structure, called simplex tree, to represent abstract simplicial complexes of any dimension. All faces of the simplicial complex are explicitly stored in a trie whose nodes are in bijection with the faces of the complex. This data structure allows to efficiently implement a large range of basic operations on simplicial complexes. We provide theoretical complexity analysis as well as detailed experimental results. We more specifically study Rips and witness complexes.

[1]  Elke Achtert,et al.  Efficient reverse k-nearest neighbor search in arbitrary metric spaces , 2006, SIGMOD Conference.

[2]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.

[3]  Guy Jacobson,et al.  Space-efficient static trees and graphs , 1989, 30th Annual Symposium on Foundations of Computer Science.

[4]  Robert Sedgewick,et al.  Fast algorithms for sorting and searching strings , 1997, SODA '97.

[5]  Jean-Daniel Boissonnat,et al.  The Compressed Annotation Matrix: An Efficient Data Structure for Computing Persistent Cohomology , 2013, Algorithmica.

[6]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[7]  Kim Steenstrup Pedersen,et al.  The Nonlinear Statistics of High-Contrast Patches in Natural Images , 2003, International Journal of Computer Vision.

[8]  André Lieutier,et al.  Efficient data structure for representing and simplifying simplicial complexes in high dimensions , 2011, SoCG '11.

[9]  Vin de Silva,et al.  On the Local Behavior of Spaces of Natural Images , 2007, International Journal of Computer Vision.

[10]  Erik Brisson,et al.  Representing geometric structures ind dimensions: Topology and order , 1993, Discret. Comput. Geom..

[11]  PASCAL LIENHARDT,et al.  N-Dimensional Generalized Combinatorial Maps and Cellular Quasi-Manifolds , 1994, Int. J. Comput. Geom. Appl..

[12]  Leonidas J. Guibas,et al.  Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes , 2007, SCG '07.

[13]  Afra Zomorodian,et al.  The tidy set: a minimal simplicial set for computing homology of clique complexes , 2010, SCG.

[14]  André Lieutier,et al.  Vietoris-rips complexes also provide topologically correct reconstructions of sampled shapes , 2011, SoCG '11.

[15]  Leonidas J. Guibas,et al.  Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes , 2009, Discret. Comput. Geom..

[16]  Sanjoy Dasgupta,et al.  Random projection trees and low dimensional manifolds , 2008, STOC.

[17]  Steve Oudot,et al.  Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.

[18]  Jean-Daniel Boissonnat,et al.  The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes , 2012, ESA.

[19]  E. Coutsias,et al.  Topology of cyclo-octane energy landscape. , 2010, The Journal of chemical physics.

[20]  Tamal K. Dey,et al.  Computing Topological Persistence for Simplicial Maps , 2012, SoCG.

[21]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.