Recent progress in solution assembly of 2D materials for wearable energy storage applications

Abstract Wearable energy storage devices are desirable to boost the rapid development of flexible and stretchable electronics. Two-dimensional (2D) materials, e.g., graphene, transition metal dichalcogenides (TMDCs) and oxides (TMOs), and MXenes, have attracted intensive attention for flexible energy storage applications because of their ultrathin 2D structures, high surface-to-volume ratio, and unique physical/chemical properties. To achieve commercialization of 2D material-based wearable energy storage devices (2DM-WESDs), scalable and cost-efficient manufacturing is a critical challenge. Among existing manufacturing technologies, solution-based assembly strategies show strong potential to achieve low-cost and scalable production. A timely review of the recent progress in solution-based assembly strategies and the resultant 2DM-WESDs will be meaningful to guide the future development of 2DM-WESDs. In this review, first, a brief introduction of exfoliation and solution preparation of 2D material species from bulk materials is discussed. Then, the solution-based assembly strategies are summarized, and the advantages and disadvantages of each method are compared. After that, two major categories of 2DM-WESDs, supercapacitor and battery, are discussed, emphasizing their state-of-the-art energy storage performances and flexibilities. Finally, insights and perspectives on current challenges and future opportunities regarding the solution assembly of 2DM-WESDs are discussed.