INTERFEROMETRIC EVIDENCE FOR RESOLVED WARM DUST IN THE DQ TAU SYSTEM

We report on near-infrared (IR) interferometric observations of the double-lined pre-main sequence binary system DQ Tau. We model these data with a visual orbit for DQ Tau supported by the spectroscopic orbit and analysis of Mathieu et al. Further, DQ Tau exhibits significant near-IR excess; modeling our data requires inclusion of near-IR light from an "excess" source. Remarkably, the excess source is resolved in our data, similar in scale to the binary itself (~0.2 AU at apastron), rather than the larger circumbinary disk (~0.4 AU radius). Our observations support the Mathieu et al. and Carr et al. inference of significant warm material near the DQ Tau binary.

[1]  K. Stassun,et al.  Periodic Accretion from a Circumbinary Disk in the Young Binary UZ Tau E , 2007, 0704.0307.

[2]  J. Valenti,et al.  T Tauri stars in blue , 1993 .

[3]  Michael F. Skrutskie,et al.  Circumstellar Material Associated with Solar-Type Pre-Main-Sequence Stars: A Possible Constraint on the Timescale for Planet Building , 1989 .

[4]  M. J. Creech-Eakman,et al.  The Visual Orbit and Evolutionary State of 12 Bootis , 1999, astro-ph/9910245.

[5]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[6]  K. Stassun,et al.  The Classical T Tauri Spectroscopic Binary DQ Tau.I.Orbital Elements and Light Curves , 1997 .

[7]  M. Skrutskie,et al.  A sensitive 10-micron search for emission arising from circumstellar dust associated with solar-type pre-main-sequence stars , 1990 .

[8]  J. M. Carpenter,et al.  Dynamical Masses for Pre-Main-Sequence Stars: A Preliminary Physical Orbit for V773 Tau A , 2007, 0706.2376.

[9]  F. Ménard,et al.  The Inner Radius of T Tauri Disks Estimated from Near-Infrared Interferometry: The Importance of Scattered Light , 2007, 0712.0012.

[10]  K. Menten,et al.  Interacting coronae of two T Tauri stars: first observational evidence for solar-like helmet streamers , 2007, 0712.0718.

[11]  et al,et al.  Observations of DG tauri with the keck interferometer , 2003 .

[12]  P. Hartigan,et al.  Disk Accretion and Mass Loss from Young Stars , 1995 .

[13]  M. Skrutskie,et al.  Physical Conditions of Accreting Gas in T Tauri Star Systems , 2008, 0807.1727.

[14]  S. Lubow,et al.  Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes , 1994 .

[15]  J. M. Carpenter,et al.  Dynamical Masses for Low-Mass Pre-Main-Sequence Stars: A Preliminary Physical Orbit for HD 98800 B , 2005, astro-ph/0508331.

[16]  S. Lubow,et al.  Mass Flow through Gaps in Circumbinary Disks , 1996 .

[17]  G. Blake,et al.  Captured at millimeter wavelengths: a flare from the classical T Tauri star DQ Tauri , 2008, 0810.4162.

[18]  Circumstellar and circumbinary discs in eccentric stellar binaries , 2005, astro-ph/0501244.

[19]  R. Mathieu,et al.  Evidence for Cleared Regions in the Disks Around Pre-Main-Sequence Spectroscopic Binaries , 1997 .

[20]  A. H. Joy Bright-Line Stars among the Taurus Dark Clouds. , 1949 .

[21]  Ipac,et al.  CorMASS: A Compact and Efficient Near‐Infrared Spectrograph for Studying Low‐Mass Objects , 2000, astro-ph/0011062.

[22]  G. Basri,et al.  The Classical T Tauri Spectroscopic Binary DQ Tau. II. Emission Line Variations with Orbital Phase. , 1997 .

[23]  Robert D. Mathieu,et al.  Evidence for Residual Material in Accretion Disk Gaps: CO Fundamental Emission from the T Tauri Spectroscopic Binary DQ Tauri , 2001 .