Combining Timed Coordination Primitives and Probabilistic Tuple Spaces

In this paper we present an integration of PLinda, a probabilistic extension of Linda, and StoKlaim , a stochastic extension of KLAIM. In the resulting language, StoPKlaim , the execution time of coordination primitives is modeled by means of exponentially distributed random variables, as in StoKlaim , the choice of the primitive to be executed among conflicting ones is thus resolved by the race condition principle, and the choice of the tuple to be retrieved by a single input/read operation in case of multiple matching tuples is governed by the weight-based probabilistic access policy of PLinda. The language represents a natural development and integration of previous results of the SENSORIA Project in the area of probabilistic and time-stochastic extensions of Tuple Space based coordination languages. The formal operational semantics of StoPKlaim is presented and an example of modeling is provided.

[1]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[2]  Mario Bravetti,et al.  Performance measure sensitive congruences for Markovian process algebras , 2003, Theor. Comput. Sci..

[3]  Diego Latella,et al.  Klaim and its stochastic semantics , 2006 .

[4]  Corrado Priami,et al.  Stochastic pi-Calculus , 1995, Comput. J..

[5]  Diego Latella,et al.  Formal modeling and quantitative analysis of KLAIM-based mobile systems , 2005, SAC '05.

[6]  Scott A. Smolka,et al.  A complete axiom system for finite-state probabilistic processes , 2000, Proof, Language, and Interaction.

[7]  Diego Latella,et al.  Model checking mobile stochastic logic , 2007, Theor. Comput. Sci..

[8]  Kenneth E. Iverson Formalism in programming languages , 1964, CACM.

[9]  Joost-Pieter Katoen,et al.  Process algebra for performance evaluation , 2002, Theor. Comput. Sci..

[10]  Diego Latella,et al.  MarCaSPiS: a Markovian Extension of a Calculus for Services , 2009, SOS@ICALP.

[11]  Alon Itai,et al.  Symmetry breaking in distributed networks , 1990, Inf. Comput..

[12]  Diego Latella,et al.  Towards a Logic for Performance and Mobility , 2006, QAPL.

[13]  Francesco Tiezzi,et al.  A Calculus for Orchestration of Web Services , 2007, ESOP.

[14]  G. Plotkin,et al.  Proof, language, and interaction: essays in honour of Robin Milner , 2000 .

[15]  Emilio Tuosto,et al.  The Klaim Project: Theory and Practice , 2003, Global Computing.

[16]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[17]  David Gelernter,et al.  Generative communication in Linda , 1985, TOPL.

[18]  Paola Quaglia,et al.  Stochastic COWS , 2007, ICSOC.

[19]  Mario Bravetti,et al.  Service oriented computing from a process algebraic perspective , 2007, J. Log. Algebraic Methods Program..

[20]  Jane Hillston,et al.  A Compositional Approach to Performance Modelling (Distinguished Dissertations in Computer Science) , 2005 .

[21]  Alexander K. Petrenko,et al.  Electronic Notes in Theoretical Computer Science , 2009 .

[22]  Mario Bravetti,et al.  Quantitative information in the tuple space coordination model , 2005, Theor. Comput. Sci..

[23]  Priya Narasimhan,et al.  Service-Oriented Computing - ICSOC 2007, Fifth International Conference, Vienna, Austria, September 17-20, 2007, Proceedings , 2007, ICSOC.

[24]  Iman Poernomo,et al.  The meta-object facility typed , 2006, SAC.

[25]  Rocco De Nicola,et al.  KLAIM: A Kernel Language for Agents Interaction and Mobility , 1998, IEEE Trans. Software Eng..

[26]  Scott A. Smolka,et al.  Algebraic Reasoning for Probabilistic Concurrent Systems , 1990, Programming Concepts and Methods.

[27]  Brian Campbell,et al.  Amortised Memory Analysis Using the Depth of Data Structures , 2009, ESOP.

[28]  Joost-Pieter Katoen,et al.  Towards Model Checking Stochastic Process Algebra , 2000, IFM.

[29]  Rocco De Nicola,et al.  MoSL : A Stochastic Logic for StoKlaim ∗ , 2006 .