EVOLVING SPHERES OF SHEAR-FREE ANISOTROPIC FLUID
暂无分享,去创建一个
[1] B.V.Ivanov,et al. The Importance of Anisotropy for Relativistic Fluids with Spherical Symmetry , 2010, 1005.1047.
[2] L. Herrera,et al. Structure and evolution of self-gravitating objects and the orthogonal splitting of the Riemann tensor , 2009, 0903.3532.
[3] N. O. Santos,et al. Shearing expansion-free spherical anisotropic fluid evolution , 2008, 0810.1083.
[4] L. Herrera,et al. All static spherically symmetric anisotropic solutions of Einstein's equations , 2007, 0712.0713.
[5] Naveen Bijalwan. Comment: On charged analogue of shear-free fluids , 2006 .
[6] Y. K. Gupta,et al. Charged sphere of shear-free fluids with $$\frac{\partial}{\rho} \partial r \leq 0$$ , 2005 .
[7] S. Maharaj,et al. Radiating collapse with vanishing Weyl stresses , 2004, astro-ph/0408148.
[8] N. O. Santos,et al. Shear-free radiating collapse and conformal flatness , 2004, gr-qc/0401022.
[9] R. Halburd. Shear-free relativistic fluids and the absence of movable branch points , 2002 .
[10] S. Jhingan,et al. Singularities in Gravitational Collapse with Radial Pressure , 2001, gr-qc/0107054.
[11] A. Prisco,et al. Conformally flat anisotropic spheres in general relativity , 2001, gr-qc/0102058.
[12] R. Halburd. Solvable models of relativistic charged spherically symmetric fluids , 2001 .
[13] G. Magli,et al. On the cosmic censorship conjecture for spherically symmetric, shear-free perfect fluid spacetimes , 2000 .
[14] F. Mahomed,et al. Non-static shear-free spherically symmetric charged perfect fluid distributions: a symmetry approach , 2000 .
[15] F. Mahomed,et al. NOETHER SYMMETRIES OF Y' = F(X)YN WITH APPLICATIONS TO NON-STATIC SPHERICALLY SYMMETRIC PERFECT FLUID SOLUTIONS , 1999 .
[16] A. Prisco,et al. On the role of density inhomogeneity and local anisotropy in the fate of spherical collapse , 1997, gr-qc/9711002.
[17] L. Herrera,et al. Local anisotropy in self-gravitating systems , 1997 .
[18] T. P. Singh,et al. Spherical gravitational collapse with tangential pressure , 1997, gr-qc/9701002.
[19] Thomas Wolf,et al. Spherically symmetric perfect fluids in shear-free motion - the symmetry approach , 1996 .
[20] R. Maartens,et al. Expanding spherically symmetric models without shear , 1995, gr-qc/9511071.
[21] P. Havas. Shear-free spherically symmetric perfect fluid solutions with conformal symmetry , 1992 .
[22] D. Srivastava. Exact Solutions for Shear‐free Motion of Spherically Symmetric Charged Perfect Fluid Distributions in General Relativity , 1992 .
[23] S. Maharaj,et al. Shear-free spherically symmetric solutions with conformal symmetry , 1991 .
[24] Wesson,et al. Cosmological solution of Einstein's equations with uniform density and nonuniform pressure. , 1989, Physical review. D, Particles and fields.
[25] R. Sussman. On spherically symmetric shear‐free perfect fluid configurations (neutral and charged). I , 1987 .
[26] D. Srivastava. On shear-free motion of charged perfect fluid obeying an equation of state in general relativity , 1986 .
[27] M. Partovi,et al. Uniqueness of the Friedmann-Lemaître-Robertson-Walker universes , 1984 .
[28] S. Chatterjee. Nonstatic charged fluid spheres in general relativity , 1984 .
[29] D. Srivastava,et al. Spherically Symmetric Perfect Fluid Distributions in General Relativity , 1987 .
[30] H. Stephani. A new interior solution of Einstein's field equations for a spherically symmetric perfect fluid in shear-free motion , 1983 .
[31] Subrahmanyan Chandrasekhar,et al. The Mathematical Theory of Black Holes , 1983 .
[32] D. Srivastava,et al. Perfect fluid spheres in general relativity , 1982 .
[33] M. Partovi,et al. On the gravitational motion of a fluid obeying an equation of state , 1980 .
[34] P. Letelier. Anisotropic fluids with two-perfect-fluid components , 1980 .
[35] M. Partovi,et al. Gravitational Collapse of a Charged Fluid Sphere , 1979 .
[36] M. Wyman. Jeffery-Williams Lecture, 1976 Non-Static Radially Symmetric Distributions of Matter , 1976, Canadian Mathematical Bulletin.
[37] D. Srivastava,et al. Dynamics of fluid spheres of uniform density , 1973 .
[38] A. Banerjee. Some properties of a uniform fluid sphere in general relativity , 1972 .
[39] C. Leibovitz. Time-Dependent Solutions of Einstein's Equations , 1971 .
[40] G. Mcvittie,et al. Spherical Symmetry and Mass‐Energy in General Relativity. I. General Theory , 1970 .
[41] M. Faulkes. Charged spheres in general relativity , 1969 .
[42] G. J. Whitrow,et al. Time-Dependent Internal Solutions for Spherically Symmetrical Bodies in General Relativity: II. Adiabatic Radial Motions of Uniformly Dense Spheres , 1968 .
[43] G. J. Whitrow,et al. TIME-DEPENDENT INTERNAL SOLUTIONS FOR SPHERICALLY SYMMETRICAL BODIES IN GENERAL RELATIVITY. I. ADIABATIC COLLAPSE. , 1967 .
[44] H. Stephani. Über Lösungen der Einsteinschen Feldgleichungen, die sich in einen fünfdimensionalen flachen Raum einbetten lassen , 1967 .
[45] H. Bondi. The contraction of gravitating spheres , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[46] M. Wyman. Equations of State for Radially Symmetric Distributions of Matter , 1946 .
[47] G. Mcvittie. The Mass-Particle in an Expanding Universe , 1933 .
[48] Abbé Georges Lemaître,et al. The Expanding Universe , 1931 .
[49] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .