EVOLVING SPHERES OF SHEAR-FREE ANISOTROPIC FLUID

The fluid models mentioned in the title are studied in a modified approach, based on two formulas for the mass function. All characteristics of the fluid are expressed through a master potential, satisfying an ordinary second-order differential equation. Different constraints are imposed on this core of relations, finding new solutions and deriving the classical results for perfect fluids as particular cases. All charged anisotropic solutions, all conformally flat and all uniform density solutions are found. A large class of solutions with linear equation among the two pressures is derived, including the case of vanishing tangential pressure. The mechanism responsible for the appearance of equation of state is elucidated.

[1]  B.V.Ivanov,et al.  The Importance of Anisotropy for Relativistic Fluids with Spherical Symmetry , 2010, 1005.1047.

[2]  L. Herrera,et al.  Structure and evolution of self-gravitating objects and the orthogonal splitting of the Riemann tensor , 2009, 0903.3532.

[3]  N. O. Santos,et al.  Shearing expansion-free spherical anisotropic fluid evolution , 2008, 0810.1083.

[4]  L. Herrera,et al.  All static spherically symmetric anisotropic solutions of Einstein's equations , 2007, 0712.0713.

[5]  Naveen Bijalwan Comment: On charged analogue of shear-free fluids , 2006 .

[6]  Y. K. Gupta,et al.  Charged sphere of shear-free fluids with $$\frac{\partial}{\rho} \partial r \leq 0$$ , 2005 .

[7]  S. Maharaj,et al.  Radiating collapse with vanishing Weyl stresses , 2004, astro-ph/0408148.

[8]  N. O. Santos,et al.  Shear-free radiating collapse and conformal flatness , 2004, gr-qc/0401022.

[9]  R. Halburd Shear-free relativistic fluids and the absence of movable branch points , 2002 .

[10]  S. Jhingan,et al.  Singularities in Gravitational Collapse with Radial Pressure , 2001, gr-qc/0107054.

[11]  A. Prisco,et al.  Conformally flat anisotropic spheres in general relativity , 2001, gr-qc/0102058.

[12]  R. Halburd Solvable models of relativistic charged spherically symmetric fluids , 2001 .

[13]  G. Magli,et al.  On the cosmic censorship conjecture for spherically symmetric, shear-free perfect fluid spacetimes , 2000 .

[14]  F. Mahomed,et al.  Non-static shear-free spherically symmetric charged perfect fluid distributions: a symmetry approach , 2000 .

[15]  F. Mahomed,et al.  NOETHER SYMMETRIES OF Y' = F(X)YN WITH APPLICATIONS TO NON-STATIC SPHERICALLY SYMMETRIC PERFECT FLUID SOLUTIONS , 1999 .

[16]  A. Prisco,et al.  On the role of density inhomogeneity and local anisotropy in the fate of spherical collapse , 1997, gr-qc/9711002.

[17]  L. Herrera,et al.  Local anisotropy in self-gravitating systems , 1997 .

[18]  T. P. Singh,et al.  Spherical gravitational collapse with tangential pressure , 1997, gr-qc/9701002.

[19]  Thomas Wolf,et al.  Spherically symmetric perfect fluids in shear-free motion - the symmetry approach , 1996 .

[20]  R. Maartens,et al.  Expanding spherically symmetric models without shear , 1995, gr-qc/9511071.

[21]  P. Havas Shear-free spherically symmetric perfect fluid solutions with conformal symmetry , 1992 .

[22]  D. Srivastava Exact Solutions for Shear‐free Motion of Spherically Symmetric Charged Perfect Fluid Distributions in General Relativity , 1992 .

[23]  S. Maharaj,et al.  Shear-free spherically symmetric solutions with conformal symmetry , 1991 .

[24]  Wesson,et al.  Cosmological solution of Einstein's equations with uniform density and nonuniform pressure. , 1989, Physical review. D, Particles and fields.

[25]  R. Sussman On spherically symmetric shear‐free perfect fluid configurations (neutral and charged). I , 1987 .

[26]  D. Srivastava On shear-free motion of charged perfect fluid obeying an equation of state in general relativity , 1986 .

[27]  M. Partovi,et al.  Uniqueness of the Friedmann-Lemaître-Robertson-Walker universes , 1984 .

[28]  S. Chatterjee Nonstatic charged fluid spheres in general relativity , 1984 .

[29]  D. Srivastava,et al.  Spherically Symmetric Perfect Fluid Distributions in General Relativity , 1987 .

[30]  H. Stephani A new interior solution of Einstein's field equations for a spherically symmetric perfect fluid in shear-free motion , 1983 .

[31]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[32]  D. Srivastava,et al.  Perfect fluid spheres in general relativity , 1982 .

[33]  M. Partovi,et al.  On the gravitational motion of a fluid obeying an equation of state , 1980 .

[34]  P. Letelier Anisotropic fluids with two-perfect-fluid components , 1980 .

[35]  M. Partovi,et al.  Gravitational Collapse of a Charged Fluid Sphere , 1979 .

[36]  M. Wyman Jeffery-Williams Lecture, 1976 Non-Static Radially Symmetric Distributions of Matter , 1976, Canadian Mathematical Bulletin.

[37]  D. Srivastava,et al.  Dynamics of fluid spheres of uniform density , 1973 .

[38]  A. Banerjee Some properties of a uniform fluid sphere in general relativity , 1972 .

[39]  C. Leibovitz Time-Dependent Solutions of Einstein's Equations , 1971 .

[40]  G. Mcvittie,et al.  Spherical Symmetry and Mass‐Energy in General Relativity. I. General Theory , 1970 .

[41]  M. Faulkes Charged spheres in general relativity , 1969 .

[42]  G. J. Whitrow,et al.  Time-Dependent Internal Solutions for Spherically Symmetrical Bodies in General Relativity: II. Adiabatic Radial Motions of Uniformly Dense Spheres , 1968 .

[43]  G. J. Whitrow,et al.  TIME-DEPENDENT INTERNAL SOLUTIONS FOR SPHERICALLY SYMMETRICAL BODIES IN GENERAL RELATIVITY. I. ADIABATIC COLLAPSE. , 1967 .

[44]  H. Stephani Über Lösungen der Einsteinschen Feldgleichungen, die sich in einen fünfdimensionalen flachen Raum einbetten lassen , 1967 .

[45]  H. Bondi The contraction of gravitating spheres , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[46]  M. Wyman Equations of State for Radially Symmetric Distributions of Matter , 1946 .

[47]  G. Mcvittie The Mass-Particle in an Expanding Universe , 1933 .

[48]  Abbé Georges Lemaître,et al.  The Expanding Universe , 1931 .

[49]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .