Electrochemical and Thermal Properties of α-NaFeO2 Cathode for Na-Ion Batteries

[1]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[2]  D. D. MacNeil,et al.  The Reactions of Li0.5CoO2 with Nonaqueous Solvents at Elevated Temperatures , 2002 .

[3]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[4]  J. Yamaki,et al.  Thermal characteristics of nongraphitizable carbon negative electrodes with electrolyte in Li-ion batteries , 2009 .

[5]  D. D. MacNeil,et al.  The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: I. Li0.5CoO2 , 2001 .

[6]  Gerbrand Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[7]  J. Yamaki,et al.  Quantitative studies on the thermal stability of the interface between graphite electrode and electrolyte , 2008 .

[8]  J. Dahn,et al.  Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells , 1994 .

[9]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[10]  B. Scrosati,et al.  Lithium-ion rechargeable batteries , 1994 .

[11]  Y. Baba,et al.  Thermal stability of LixCoO2 cathode for lithium ion battery , 2002 .

[12]  Yasuo Takeda,et al.  Sodium deintercalation from sodium iron oxide , 1994 .

[13]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[14]  S. Kikkawa,et al.  Sodium deintercalation from α-NaFeO2 , 1985 .

[15]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.