A MULTI-WAVELENGTH STUDY OF THE SUNYAEV–ZEL'DOVICH EFFECT IN THE TRIPLE-MERGER CLUSTER MACS J0717.5+3745 WITH MUSTANG AND BOLOCAM

We present 90, 140, and 268 GHz subarcminute resolution imaging of the Sunyaev–Zel'dovich effect (SZE) in the disturbed, intermediate-redshift (z = 0.5458) galaxy cluster MACS J0717.5+3745, a triple-merger system comprising four distinct, optically detected subclusters. Our 90 GHz SZE data result in a sensitive, 34  μJy beam−1 map of the SZE at 13″ effective resolution using the MUSTANG bolometer array on the Green Bank Telescope (GBT). Our 140 and 268 GHz SZE imaging, with resolutions of 58″ and 31″ and sensitivities of 1.8 and 3.3 mJy beam−1, respectively, was obtained through observations from the Caltech Submillimeter Observatory using Bolocam. We compare these maps to a two-dimensional pressure map derived from Chandra X-ray observations. Our MUSTANG SZE data confirm previous indications from Chandra of a pressure enhancement due to shock-heated, ≳ 20 keV gas immediately adjacent to extended radio emission seen in low-frequency radio maps of this cluster. MUSTANG also detects pressure substructure that is not well constrained by the Chandra X-ray data in the remnant core of a merging subcluster. We find that the small-scale pressure enhancements in the MUSTANG data amount to ∼2% of the total pressure measured in the 140 GHz Bolocam observations. The X-ray inferred pseudo-pressure template also fails on larger scales to accurately describe the Bolocam data, particularly at the location of the subcluster with a remnant core known to have a high line-of-sight optical velocity of ∼3200 km s−1. Our Bolocam data are adequately described when we add an additional component—not described by a thermal SZE spectrum—to the X-ray template coincident with this subcluster. Using flux densities extracted from our model fits, and marginalizing over the X-ray spectroscopic temperature constraints for the region, we fit a thermal + kinetic SZE spectrum to our Bolocam data and find that the subcluster has a best-fit line-of-sight proper velocity vz = 3600+3440− 2160 km s−1, in agreement with the optical velocity estimates for the subcluster. The probability vz ⩽ 0 given our measurements is 2.1%. Repeating this analysis using flux densities measured directly from our maps results in a 3.4% probability vz ⩽ 0. We note that this tantalizing result for the kinetic SZE is on resolved, subcluster scales.

[1]  M. Rosenman,et al.  HIGH SPECTRAL RESOLUTION MEASUREMENT OF THE SUNYAEV–ZEL'DOVICH EFFECT NULL WITH Z-Spec , 2012, 1202.0029.

[2]  P. Coppi,et al.  The polytropic approximation and X-ray scaling relations: constraints on gas and dark matter profiles for galaxy groups and clusters , 2011, 1111.5573.

[3]  J. Kneib,et al.  Strong lensing by a node of the cosmic web The core of MACS J0717.5+3745 at z=0.55 , 2011, 1109.3301.

[4]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: HIGH-RESOLUTION SUNYAEV–ZEL'DOVICH ARRAY OBSERVATIONS OF ACT SZE-SELECTED CLUSTERS FROM THE EQUATORIAL STRIP , 2011, The Astrophysical Journal.

[5]  Nicole G. Czakon,et al.  143 GHz BRIGHTNESS MEASUREMENTS OF URANUS, NEPTUNE, AND OTHER SECONDARY CALIBRATORS WITH BOLOCAM BETWEEN 2003 AND 2010 , 2011, 1110.3473.

[6]  S. R. Dicker,et al.  MUSTANG HIGH ANGULAR RESOLUTION SUNYAEV–ZEL'DOVICH EFFECT IMAGING OF SUBSTRUCTURE IN FOUR GALAXY CLUSTERS , 2010, 1010.5494.

[7]  M. Halpern,et al.  THE ATACAMA COSMOLOGY TELESCOPE: SUNYAEV–ZEL'DOVICH-SELECTED GALAXY CLUSTERS AT 148 GHz IN THE 2008 SURVEY , 2010, 1010.1065.

[8]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: EXTRAGALACTIC SOURCES AT 148 GHz IN THE 2008 SURVEY , 2010, 1007.5256.

[9]  Elena Pierpaoli,et al.  CLUSTER MORPHOLOGIES AND MODEL-INDEPENDENT YSZ ESTIMATES FROM BOLOCAM SUNYAEV–ZEL'DOVICH IMAGES , 2010, 1010.1798.

[10]  H. Kawahara,et al.  IMPACT OF CHANDRA CALIBRATION UNCERTAINTIES ON GALAXY CLUSTER TEMPERATURES: APPLICATION TO THE HUBBLE CONSTANT , 2010, 1006.4486.

[11]  J. Bock,et al.  A high signal-to-noise ratio map of the Sunyaev–Zel’dovich increment at 1.1-mm wavelength in Abell 1835 , 2010, 1005.4699.

[12]  M. Donahue,et al.  Chandra observation of two shock fronts in the merging galaxy cluster Abell 2146 , 2010, 1004.1559.

[13]  Adrian T. Lee,et al.  SUNYAEV–ZEL’DOVICH CLUSTER PROFILES MEASURED WITH THE SOUTH POLE TELESCOPE , 2009, 0911.2444.

[14]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[15]  K. Irwin,et al.  IMPLICATIONS OF A HIGH ANGULAR RESOLUTION IMAGE OF THE SUNYAEV–ZEL'DOVICH EFFECT IN RXJ1347−1145 , 2009, 0910.5025.

[16]  H. Rottgering,et al.  Diffuse radio emission in the merging cluster MACS J0717.5+3745: the discovery of the most powerful radio halo , 2009, 0905.3650.

[17]  H. Ebeling,et al.  Revealing the magnetic field in a distant galaxy cluster: discovery of the complex radio emission from MACS J0717.5 +3745 , 2009, 0905.3552.

[18]  P. Ade,et al.  Observations of M87 and Hydra A at 90 GHz , 2009, 0902.3149.

[19]  Adrian T. Lee,et al.  Multi-frequency imaging of the galaxy cluster Abell 2163 using the Sunyaev-Zel'dovich effect , 2009, 0902.2131.

[20]  Megan Donahue,et al.  INTRACLUSTER MEDIUM ENTROPY PROFILES FOR A CHANDRA ARCHIVAL SAMPLE OF GALAXY CLUSTERS , 2009, 0902.1802.

[21]  H. Ebeling,et al.  AN X-RAY/OPTICAL STUDY OF THE COMPLEX DYNAMICS OF THE CORE OF THE MASSIVE INTERMEDIATE-REDSHIFT CLUSTER MACSJ0717.5+3745 , 2009, 0901.4783.

[22]  K. D. Irwin,et al.  MUSTANG: 90 GHz science with the Green Bank Telescope , 2009, Astronomical Telescopes + Instrumentation.

[23]  H. Ebeling,et al.  The Spatial Distribution of Galaxies of Different Spectral Types in the Massive Intermediate-Redshift Cluster MACS J0717.5+3745 , 2008, 0805.2238.

[24]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[25]  W. Forman,et al.  Images, Structural Properties, and Metal Abundances of Galaxy Clusters Observed with Chandra ACIS-I at 0.1 < z < 1.3 , 2007, astro-ph/0703156.

[26]  J. Hughes,et al.  Suzaku Observations of Abell 1795: Cluster Emission to r200 , 2007, 0906.3515.

[27]  A. Edge,et al.  A Complete Sample of 12 Very X-Ray Luminous Galaxy Clusters at z > 0.5 , 2007, astro-ph/0703394.

[28]  Alexey Vikhlinin,et al.  Shocks and cold fronts in galaxy clusters , 2007, astro-ph/0701821.

[29]  Amber D. Miller,et al.  Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel’dovich Array , 2006, astro-ph/0610115.

[30]  K. Dawson,et al.  Radio Sources toward Galaxy Clusters at 30 GHz , 2006, astro-ph/0608274.

[31]  J. Sanders Contour binning: a new technique for spatially-resolved X-ray spectroscopy applied to Cassiopeia A , 2006, astro-ph/0606528.

[32]  T. Ensslin,et al.  Mergers, relics and magnetic fields: the complex case of A2256 , 2006 .

[33]  K. Dawson,et al.  X-Ray and Sunyaev-Zel’dovich Effect Measurements of the Gas Mass Fraction in Galaxy Clusters , 2006, astro-ph/0604039.

[34]  C. Carilli,et al.  The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts , 2005, Nature.

[35]  James J. Bock,et al.  Bolocam: status and observations , 2004, SPIE Astronomical Telescopes + Instrumentation.

[36]  H. Ebeling,et al.  Discovery of a Large-Scale Filament Connected to the Massive Galaxy Cluster MACS J0717.5+3745 at z = 0.55 , 2004, astro-ph/0406049.

[37]  S. Nozawa,et al.  Relativistic corrections to the Sunyaev-Zeldovich effect for extremely hot clusters of galaxies , 2004 .

[38]  E. Komatsu,et al.  Exploring Cluster Physics with High-Resolution Sunyaev-Zel'dovich Effect Images and X-Ray Data , 2003, astro-ph/0311574.

[39]  C. Sarazin Mergers and Non-Thermal Processes in Clusters , 2003, astro-ph/0310157.

[40]  J. J. Bock,et al.  Peculiar Velocity Limits from Measurements of the Spectrum of the Sunyaev-Zeldovich Effect in Six Clusters of Galaxies , 2003, astro-ph/0303510.

[41]  M. Bremer,et al.  The discovery of two distant, massive clusters of galaxies in the ROSAT All-Sky Survey , 2003 .

[42]  J. Mohr,et al.  Determining the Cosmic Distance Scale from Interferometric Measurements of the Sunyaev-Zeldovich Effect , 2002, astro-ph/0205350.

[43]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[44]  M. Birkinshaw,et al.  The Sunyaev-Zel’dovich Effect , 1998, astro-ph/9808050.

[45]  S. Nozawa,et al.  Relativistic Corrections to the Sunyaev-Zeldovich Effect for Clusters of Galaxies. IV. Analytic Fitting Formula for the Numerical Results , 1999, astro-ph/9912008.

[46]  P. A. R. Ade,et al.  Limits on the Peculiar Velocities of Two Distant Clusters Using the Kinematic Sunyaev-Zeldovich Effect , 1997, astro-ph/9702223.

[47]  Richard L. White,et al.  A Catalog of 1.4 GHz Radio Sources from the FIRST Survey , 1997 .

[48]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[49]  C. Carilli,et al.  Multifrequency radio observations of Cygnus A - Spectral aging in powerful radio galaxies , 1991 .

[50]  C. Sarazin X-Ray Emission from Clusters of Galaxies , 1988 .