暂无分享,去创建一个
[1] David G. Stork,et al. Pattern Classification , 1973 .
[2] D. Boyd. The power method for lp norms , 1974 .
[3] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[4] G. Jameson. Summing and nuclear norms in Banach space theory , 1987 .
[5] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[6] 藤重 悟. Submodular functions and optimization , 1991 .
[7] 安藤 毅. Completely positive matrices , 1991 .
[8] Stéphane Mallat,et al. Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..
[9] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[10] Y. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization , 1998 .
[11] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[12] H. Sebastian Seung,et al. Learning the parts of objects by non-negative matrix factorization , 1999, Nature.
[13] Aapo Hyvärinen,et al. Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.
[14] J. Borwein,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[15] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.
[16] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[17] Renato D. C. Monteiro,et al. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..
[18] Adrian Lewis,et al. The mathematics of eigenvalue optimization , 2003, Math. Program..
[19] Noga Alon,et al. Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.
[20] Adi Shraibman,et al. Rank, Trace-Norm and Max-Norm , 2005, COLT.
[21] A. Bruckstein,et al. K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .
[22] M. Elad,et al. $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.
[23] Nathan Linial,et al. Complexity measures of sign matrices , 2007, Comb..
[24] A. Barron,et al. Approximation and learning by greedy algorithms , 2008, 0803.1718.
[25] Jean Ponce,et al. Convex Sparse Matrix Factorizations , 2008, ArXiv.
[26] I. Daubechies,et al. Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.
[27] Laurent El Ghaoui,et al. Robust Optimization , 2021, ICORES.
[28] Nancy Bertin,et al. Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis , 2009, Neural Computation.
[29] Ruslan Salakhutdinov,et al. Practical Large-Scale Optimization for Max-norm Regularization , 2010, NIPS.
[30] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[31] Ben Taskar,et al. Joint covariate selection and joint subspace selection for multiple classification problems , 2010, Stat. Comput..
[32] Francis R. Bach,et al. Low-Rank Optimization on the Cone of Positive Semidefinite Matrices , 2008, SIAM J. Optim..
[33] Yurii Nesterov,et al. Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..
[34] Guillermo Sapiro,et al. Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..
[35] Tong Zhang,et al. Analysis of Multi-stage Convex Relaxation for Sparse Regularization , 2010, J. Mach. Learn. Res..
[36] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[37] Dimitri P. Bertsekas,et al. A Unifying Polyhedral Approximation Framework for Convex Optimization , 2011, SIAM J. Optim..
[38] F. Bach,et al. Optimization with Sparsity-Inducing Penalties (Foundations and Trends(R) in Machine Learning) , 2011 .
[39] Constantine Caramanis,et al. Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.
[40] Julien Mairal,et al. Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..
[41] Kevin P. Murphy,et al. Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.
[42] Pablo A. Parrilo,et al. The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.
[43] Joel A. Tropp,et al. Factoring nonnegative matrices with linear programs , 2012, NIPS.
[44] Sanjeev Arora,et al. Computing a nonnegative matrix factorization -- provably , 2011, STOC '12.
[45] Yaoliang Yu,et al. Accelerated Training for Matrix-norm Regularization: A Boosting Approach , 2012, NIPS.
[46] Francis R. Bach,et al. Convex Relaxation for Combinatorial Penalties , 2012, ArXiv.
[47] Charles A. Micchelli,et al. Regularizers for structured sparsity , 2010, Advances in Computational Mathematics.
[48] Martin Jaggi,et al. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.
[49] B. Nadler,et al. Do Semidefinite Relaxations Really Solve Sparse PCA , 2013 .
[50] Francis R. Bach,et al. Learning with Submodular Functions: A Convex Optimization Perspective , 2011, Found. Trends Mach. Learn..
[51] Gábor Lugosi,et al. Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.
[52] Andrea Montanari,et al. Finding Hidden Cliques of Size $$\sqrt{N/e}$$N/e in Nearly Linear Time , 2013, Found. Comput. Math..
[53] Francis R. Bach,et al. Duality Between Subgradient and Conditional Gradient Methods , 2012, SIAM J. Optim..
[54] Zaïd Harchaoui,et al. Conditional gradient algorithms for norm-regularized smooth convex optimization , 2013, Math. Program..