Scaling index method: a novel nonlinear technique for the analysis of high-resolution MRI of human bones

The scaling index method (SIM) is a novel non-linear technique to extract structural information from arbitrary data sets. The tomographic images of a three dimensional object can be interpreted as a pixel distribution in a four dimensional space. The SIM provides a distribution of pointwise dimensions which characterizes the structural information of images. The SIM is applied to high resolution magnetic resonance images of human spinal and femoral bone specimens IN VITRO in order to derive a 3d non-linear texture measure which is compared to standard 2d morphometric parameters and bone mineral density in the prediction of biomechanical strength of trabecular bone. Our results show that structural non-linear parameters associated with the trabecular substructure of the bone can effectively predict the mechanical properties of trabecular bone in vitro. This indicates that the trabecular architecture contributes substantially to the biomechanical properties of the bone.

[1]  Jensen,et al.  Fractal measures and their singularities: The characterization of strange sets. , 1987, Physical review. A, General physics.

[2]  S. Majumdar,et al.  Heterogeneity of Trabecular Bone Structure in the Calcaneus Using Magnetic Resonance Imaging , 1998, Osteoporosis International.

[3]  M. Drezner,et al.  Bone histomorphometry: Standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committee , 1987, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[4]  S. Majumdar,et al.  Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging. , 1995, Bone.

[5]  Wilfried Brauer,et al.  MELDOQ: Ein System zur Unterstützung der Früherkennung des malignen Melanoms durch digitale Bildverarbeitung , 2000, Bildverarbeitung für die Medizin.

[6]  A. Parfitt Bone histomorphometry: standardization of nomenclature, symbols and units (summary of proposed system). , 1988, Bone.

[7]  R. Huiskes,et al.  Mechanical and textural properties of pelvic trabecular bone. , 1993, Journal of biomechanics.

[8]  X. Marchandise,et al.  Bone microarchitecture and mechanical resistance , 2001 .

[9]  L. Mosekilde,et al.  Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. , 1987, Bone.

[10]  M. Laval-jeantet,et al.  CT image analysis of the vertebral trabecular network in vivo , 1992, Calcified Tissue International.

[11]  P. Grassberger,et al.  Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors , 1988 .

[12]  S. Majumdar,et al.  Correlation of Trabecular Bone Structure with Age, Bone Mineral Density, and Osteoporotic Status: In Vivo Studies in the Distal Radius Using High Resolution Magnetic Resonance Imaging , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[13]  A. B. Hill,et al.  Principles of Medical Statistics , 1950, The Indian Medical Gazette.

[14]  Gregor E. Morfill,et al.  Texture detection and texture discrimination with anisotropic scaling indices , 1997 .

[15]  L. Avioli,et al.  The bone “quality” problem , 1992, Calcified Tissue International.